Vehicle Propulsion Systems Lecture 2

March 26, 2024

Lars Eriksson Professor

Vehicular Systems Linköping University

March 26, 2024

2/54

Outline

Repetition

Driving Missions

Energy Consumption of a Driving Mission

The Vehicle Motion Equation
Losses in the vehicle motion
Energy Demand of Driving Missions

Energy demand

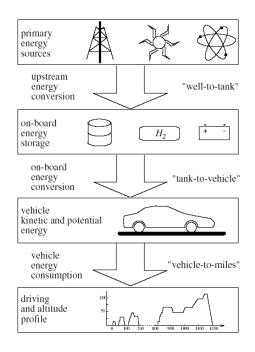
Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables Engine Efficiency

Energy System Overview



Primary sources

Different options for on-board energy storage

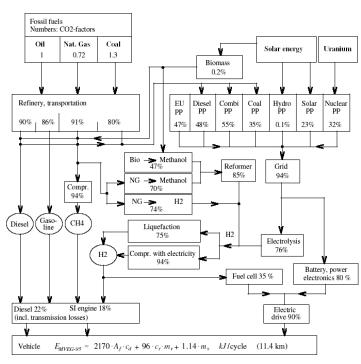
Powertrain energy conversion during driving

Cut at the wheel!

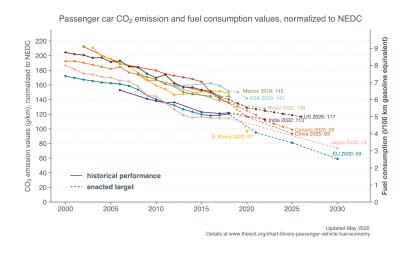
Driving mission has a minimum energy requirement.

4 / 54

W2M - Energy Paths



Environmental Concern - Tailpipe CO₂ as technology driver



CAFE

- ► Corporate Average Fuel Economy
- ► Tail-pipe CO₂
- Based on real sales
- Companies are responsible
- Must sell EV:s
- ► Advertising, media presence
- No incentive for bio-fuels among powerful companies
- ► Legislation is rigged for E-Mobility

Different cycles over the world, normalization to compare with NEDC cycle.

6 / 54

Results - The ICCT

Results

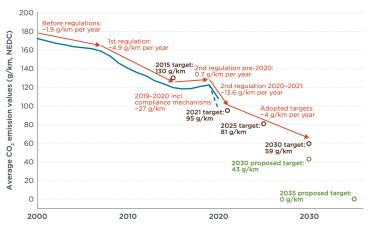


Figure 1. Historical average NEDC ${\rm CO_2}$ emission values, targets, and annual reduction rates of new passenger cars.

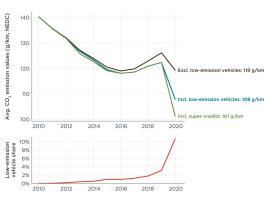


Figure 3. Top panel: Historical average CO_2 emissions (g/km, NEDC) excluding low-emission vehicles, including low-emission vehicles, and including the effect of super-credit multipliers. Bottom panel: Share of low-emission vehicles.

8 / 54

Outline

Repetition

Driving Missions

Energy Consumption of a Driving Mission

The Vehicle Motion Equation Losses in the vehicle motion Energy Demand of Driving Missions

Energy demand

Energy demand and recuperation Sensitivity Analysis

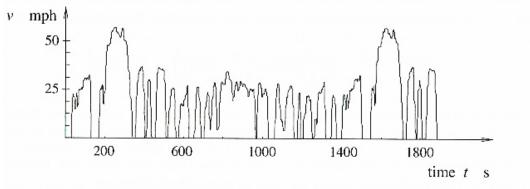
Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables Engine Efficiency

Driving profiles

Velocity profile, American FTP-75 (1.5*FUDS).



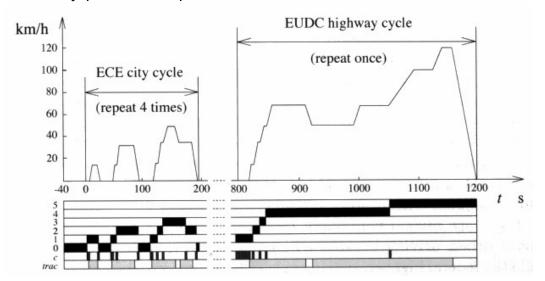
Driving profiles in general

- First used for pollutant control now also for fuel consumption.
- ▶ Important that all use the same cycle when comparing.
- ▶ Different cycles have different energy demands.

10 / 54

Driving profiles – Another example

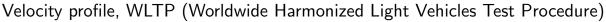
Velocity profile, European MVEG-95

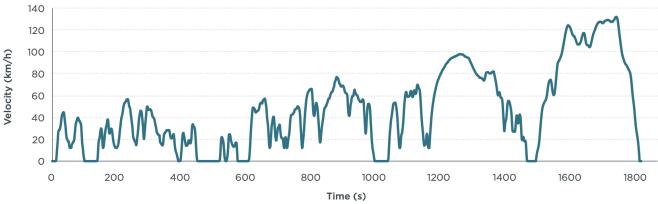


NEDC (ECE*4, EUDC)

No coasting in this driving profile.

Driving profiles - A third example

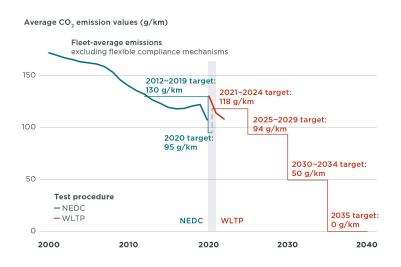




Adopted for new vehicles in 2017 in EU. More demanding than NEDC.

12 / 54

Results due to change in cycle for CO₂



Changes in the cycle used NEDC →WLTP

- ➤ 2017 Change for emission certification
- ▶ 2021 Change for CO₂
- More demanding cycle
- Adjusted 95g/km to 118g/km
- Different cycles have different energy demands
- Normalization performed for comparisons in the ICCT data.

Outline

Repetition

Driving Missions

Energy Consumption of a Driving Mission

The Vehicle Motion Equation
Losses in the vehicle motion
Energy Demand of Driving Missions

Energy demand

Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables Engine Efficiency

14 / 54

Energy Consumption of a Driving Mission

- Remember the partitioningCut at the wheels.
- ► How large **force** is required at the wheels for driving the vehicle on a mission?

Repetition - Work, power and Newton's law

Translational system - Force, work and power:

$$W = \int F dx, \qquad P = \frac{d}{dt}W = F v$$

Rotating system – Torque (T = F r), work and power:

$$W = \int T d\theta, \qquad P = T \omega$$

Newton's second law:

Warning

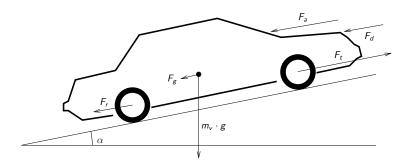
Nomenclature difference: Here J, in book Θ

16 / 54

The Vehicle Motion Equation

Newton's second law for a vehicle

$$m_V \frac{d}{dt} v(t) = F_t(t) - (F_a(t) + F_r(t) + F_g(t) + F_d(t))$$



- $ightharpoonup F_t$ tractive force
- $ightharpoonup F_a$ aerodynamic drag force
- $ightharpoonup F_r$ rolling resistance force
- ▶ F_g gravitational force
- $ightharpoonup F_d$ disturbance force

Aerodynamic Drag Force - Loss

Aerodynamic drag force depends on:

Frontal area A_f , drag coefficient c_d , air density ρ_a and vehicle velocity v(t)

$$F_a(t) = \frac{1}{2} \cdot \rho_a \cdot A_f \cdot c_d \cdot v(t)^2$$

Approximate contributions to F_a

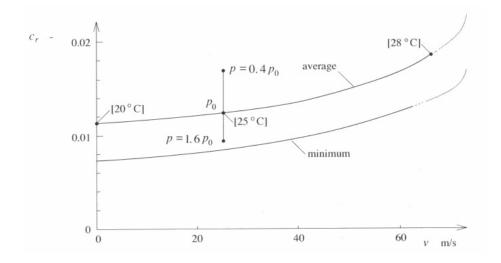
- ► 65% car body.
- ▶ 20% wheel housings.
- ▶ 10% exterior mirrors, eave gutters, window housings, antennas, etc.
- ▶ 5% engine ventilation.

18 / 54

Rolling Resistance Losses

Rolling resistance depends on: - load and tire/road conditions

$$F_r(v, p_t, \text{surface}, ...) = c_r(v, p_t, ...) \cdot m_v \cdot g \cdot \cos(\alpha), \qquad v > 0$$



The velocity has small influence at low speeds.

Increases sharply for high speeds where resonance phenomena occur.

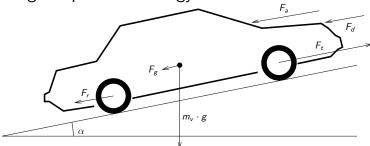
Assumption in book: c_r – constant

$$F_r = c_r \cdot m_v \cdot g$$

Gravitational Force

► Gravitational load force

-Not a loss, storage of potential energy



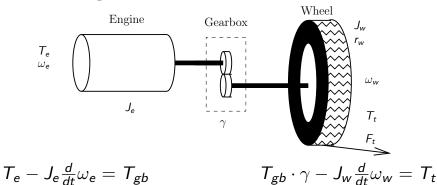
Up- and down-hill driving produces forces.

$$F_g = m_v g \sin(\alpha)$$

▶ Flat road assumed $\alpha = 0$ if nothing else is stated (In the book).

20 / 54

Inertial forces - Reducing the Tractive Force



Variable substitution: $T_w = \gamma T_e$,

$$\omega_{\mathbf{w}} \, \gamma = \omega_{\mathbf{e}}$$
,

 $v = \omega_w r_w$

Tractive force:

$$F_t = \frac{1}{r_w} \left[\left(T_e - J_e \frac{d}{dt} \frac{v(t)}{r_w} \gamma \right) \cdot \gamma - J_w \frac{d}{dt} \frac{v(t)}{r_w} \right] = \frac{\gamma}{r_w} T_e - \left(\frac{\gamma^2}{r_w^2} J_e + \frac{1}{r_w^2} J_w \right) \frac{d}{dt} v(t)$$

The Vehicle Motion Equation:

$$\left[m_{v} + \frac{\gamma^{2}}{r_{w}^{2}}J_{e} + \frac{1}{r_{w}^{2}}J_{w}\right]\frac{d}{dt}v(t) = \frac{\gamma}{r_{w}}T_{e} - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

Vehicle Operating Modes

The Vehicle Motion Equation:

$$m_{V} \frac{d}{dt} v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

- $ightharpoonup F_t > 0$ traction
- $ightharpoonup F_t < 0$ braking
- $ightharpoonup F_t = 0$ coasting

$$\frac{d}{dt}v(t) = -\frac{1}{2m_v}\rho_a A_f c_d v^2(t) - g c_r = -\alpha^2 v^2(t) - \beta^2$$

Coasting solution for v > 0

$$v(t) = \frac{\beta}{\alpha} \tan \left(\arctan \left(\frac{\alpha}{\beta} \, v(0) \right) - \alpha \, \beta \, t \right)$$

22 / 54

How to check a profile for traction?

The Vehicle Motion Equation:

$$m_{\nu} \frac{d}{dt} v(t) = F_t(t) - (F_a(t) + F_r(t) + F_g(t) + F_d(t))$$
 (1)

- Traction conditions: $F_t > 0$ traction, $F_t < 0$ braking, $F_t = 0$ coasting
- ▶ Method 1: Compare the profile with the coasting solution over a time step

$$v_{coast}(t_{i+1}) = rac{eta}{lpha} an \left(rctan \left(rac{lpha}{eta} \, v(t_i)
ight) - lpha \, eta \, (t_{i+1} - t_i)
ight)$$

▶ Method 2: Solve (1) for F_t

$$F_t(t) = m_v \frac{d}{dt} v(t) + (F_a(t) + F_r(t) + F_g(t) + F_d(t))$$

Numerically differentiate the profile v(t) to get $\frac{d}{dt}v(t)$. Compare with Traction condition $(F_t > 0)$.

Mechanical Energy Demand of a Cycle

Only the demand from the cycle

▶ The mean tractive force during a cycle

$$\bar{F}_{trac} = \frac{1}{x_{tot}} \int_{0}^{x_{tot}} \max(F(x), 0) dx = \frac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) dt$$

where $x_{tot} = \int_0^{t_{max}} v(t) dt$.

- ▶ Note $t \in trac$ in definition.
- Only traction.
- Idling not a demand from the cycle.

24 / 54

Evaluating the integral

Discretized velocity profile used to evaluate

$$\bar{F}_{trac} = \frac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) dt$$

here $v_i = v(t_i)$, $t_i = i \cdot h$, i = 1, ..., n. Approximating the quantites

$$ar{v}_i(t) pprox rac{v_i + v_{i-1}}{2}, \qquad t \in [t_{i-1}, t_i)$$

$$\bar{a}_i(t) pprox rac{v_i - v_{i-1}}{h}, \qquad t \in [t_{i-1}, t_i)$$

Traction approximation

$$ar{F}_{trac} pprox rac{1}{x_{tot}} \sum_{i \in trac} ar{F}_{trac,i} \, ar{v}_i \, h$$

Evaluating the integral

Tractive force from The Vehicle Motion Equation

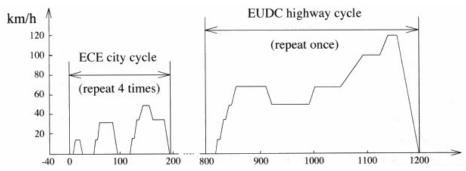
$$F_{trac} = rac{1}{2}
ho_a A_f c_d v^2(t) + m_v g c_r + m_v a(t)$$
 $ar{F}_{trac} = ar{F}_{trac,a} + ar{F}_{trac,r} + ar{F}_{trac,m}$

Resulting in these sums

$$\begin{split} \bar{F}_{trac,a} &= \frac{1}{x_{tot}} \frac{1}{2} \, \rho_a \, A_f \, c_d \sum_{i \in trac} \bar{v}_i^3 \, h \\ \bar{F}_{trac,r} &= \frac{1}{x_{tot}} \, m_v \, g \, c_r \sum_{i \in trac} \bar{v}_i \, h \\ \bar{F}_{trac,m} &= \frac{1}{x_{tot}} \, m_v \sum_{i \in trac} \bar{a}_i \, \bar{v}_i \, h \end{split}$$

26 / 54

Values for cycles



Numerical values for the cycles:

{MVEG-95, ECE, EUDC}

$$\bar{X}_{trac,a} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 h =$$

$$\bar{X}_{trac,r} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i h =$$

$$\bar{X}_{trac,m} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h =$$

$$\{0.856, 0.81, 0.88\}$$

$$\bar{X}_{trac,m} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h =$$

$$\{0.101, 0.126, 0.086\}$$

Values for cycles

$$\bar{X}_{trac,a} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 h =$$

$$\bar{X}_{trac,r} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i h =$$

$$\bar{X}_{trac,m} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h =$$

$$\{0.856, 0.81, 0.88\}$$

$$\bar{X}_{trac,m} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h =$$

$$\{0.101, 0.126, 0.086\}$$

Adopting appropriate units and packaging the results as an Equation

$$\bar{E}_{\text{MVEG-95}} \approx A_f c_d 1.9 \cdot 10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10$$
 $kJ/100km$

Tasks in Hand-in assignment

28 / 54

Approximate car data

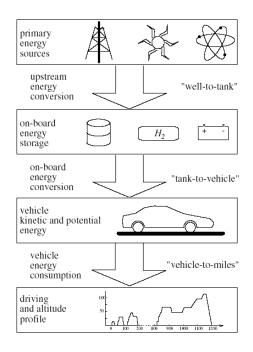
The energy need for the MVEG-95 cycle per 100 km.

$$\bar{E}_{\text{MVEG-95}} pprox A_f \, c_d \, 1.9 \cdot 10^4 + m_v \, c_r \, 8.4 \cdot 10^2 + m_v \, 10$$
 $kJ/100 \, km$

	SUV	full-size	compact	light-weight	PAC-Car II
$A_f \cdot c_d$	1.2 m^2	0.7 m^2	0.6 m ²	0.4 m ²	.25 · .07 m ²
C_r	0.017	0.017	0.017	0.017	8000.0
$m_{\rm v}$	2000 kg	1500 kg	1000 kg	750 kg	39 kg
$\bar{P}_{MVEG-95}$	11.3 kW	7.1 kW	5.0 kW	3.2 kW	
$ar{P}_{\sf max}$	155 kW	115 kW	77 kW	57 kW	

Average and maximum power requirement for the cycle.

Energy System Overview



Primary sources

Different options for on-board energy storage

Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

30 / 54

Outline

Repetition

Driving Missions

Energy Consumption of a Driving Mission

The Vehicle Motion Equation
Losses in the vehicle motion
Energy Demand of Driving Missions

Energy demand

Energy demand and recuperation Sensitivity Analysis

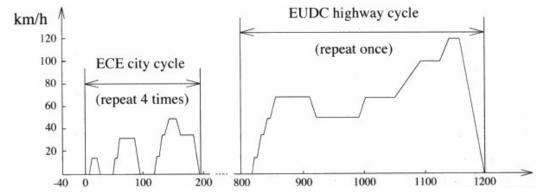
Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables Engine Efficiency

Energy demand again - Recuperation

- ▶ Previously: Considered energy demand from the cycle.
- Now: The cycle can give energy to the vehicle.



Recover the vehicle's kinetic energy during driving.

32 / 54

Perfect recuperation

► Mean required force

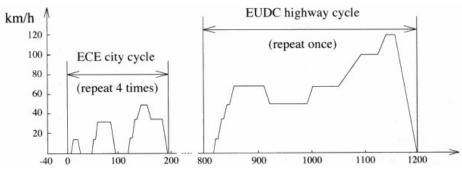
$$\bar{F} = \bar{F}_a + \bar{F}_r$$

► Sum over all points

$$\bar{F}_a = \frac{1}{x_{tot}} \frac{1}{2} \rho_a A_f c_d \sum_{i=1}^N \bar{v}_i^3 h$$

$$\bar{F}_r = \frac{1}{x_{tot}} m_v g c_r \sum_{i=1}^N \bar{v}_i h$$

Perfect recuperation - Numerical values for cycles



Numerical values for MVEG-95, ECE, EUDC

$$\bar{X}_{a} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i}^{3} h =$$
 {363, 100, 515}
$$\bar{X}_{r} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i} h =$$
 {1, 1, 1}

$$\bar{E}_{\text{MVEG-95}} \approx A_f c_d 2.2 \cdot 10^4 + m_v c_r 9.81 \cdot 10^2$$
 $kJ/100 km$

34 / 54

Comparison of numerical values for cycles

Without recuperation.

$$\bar{X}_{trac,a} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 h =$$
 {319,82.9,455}

$$\bar{X}_{trac,r} = \frac{1}{X_{tot}} \sum_{i \in trac} \bar{v}_i h =$$
 {0.856, 0.81, 0.88}

$$\bar{X}_{trac,m} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \, \bar{v}_i \, h =$$
 {0.101, 0.126, 0.086}

With perfect recuperation

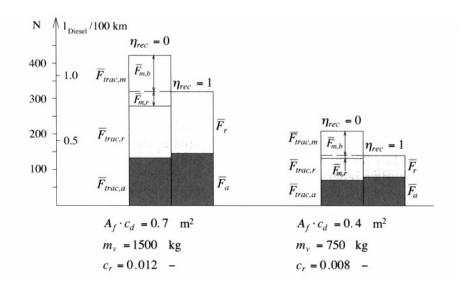
$$\bar{X}_{a} = \frac{1}{X_{tot}} \sum_{i} \bar{v}_{i}^{3} h =$$

$$\bar{X}_{r} = \frac{1}{X_{tot}} \sum_{i} \bar{v}_{i} h =$$

$$\{363, 100, 515\}$$

$$\{1, 1, 1\}$$

Perfect and no recuperation



Mean force represented as liter Diesel / 100 km.

36 / 54

Sensitivity Analysis - Design changes

Cycle energy reqirement (no recuperation)

$$\bar{E}_{\mathsf{MVEG-95}} pprox A_f \ c_d \ 1.9 \cdot 10^4 + m_v \ c_r \ 8.4 \cdot 10^2 + m_v \ 10$$
 $kJ/100 km$

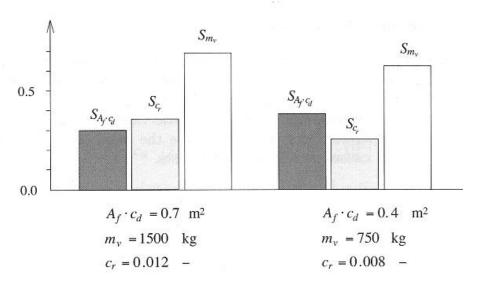
Sensitivity analysis

$$S_{p} = \lim_{\delta p \to 0} \frac{\left[\bar{E}_{\mathsf{MVEG-95}}(p + \delta p) - \bar{E}_{\mathsf{MVEG-95}}(p)\right] / \bar{E}_{\mathsf{MVEG-95}}(p)}{\delta p / p}$$

$$S_p = \lim_{\delta p \to 0} \frac{\left[\bar{E}_{\mathsf{MVEG-95}}(p + \delta p) - \bar{E}_{\mathsf{MVEG-95}}(p)\right]}{\delta p} \frac{p}{\bar{E}_{\mathsf{MVEG-95}}(p)}$$

- Consider the vehicle design parameters:
 - \triangleright $A_f c_d$
 - **>** c
 - $ightharpoonup m_{v}$

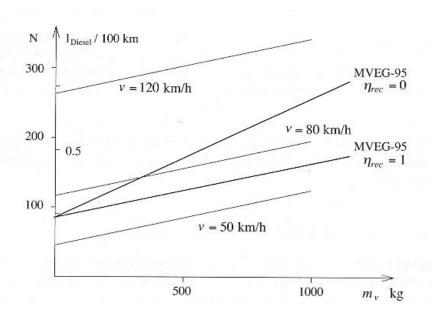
Sensitivity Analysis



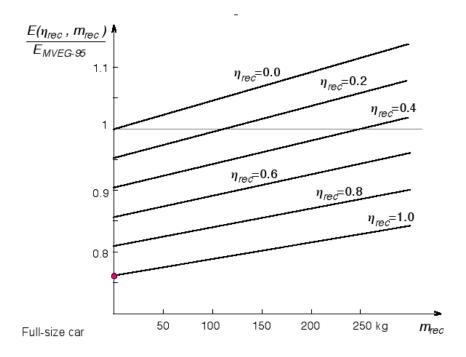
Vehicle mass is the most important parameter.

38 / 54

Vehicle mass and fuel consumption



Realistic Recuperation Devices



40 / 54

Outline

Repetition

Driving Missions

Energy Consumption of a Driving Mission

The Vehicle Motion Equation Losses in the vehicle motion

Energy Demand of Driving Missions

Energy demand

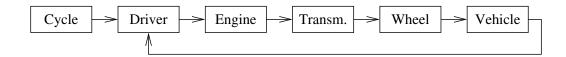
Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables Engine Efficiency

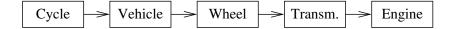
Dynamic approach



- Forward simulation.
- Drivers input u propagates to the vehicle and the cycle
- ▶ Drivers input $\Rightarrow ... \Rightarrow$ Driving force \Rightarrow Losses \Rightarrow Vehicle velocity \Rightarrow Feedback to driver model
- Available tools (= Standard simulation) can deal with arbitrary powertrain complexity.

42 / 54

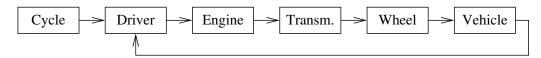
Quasistatic approach



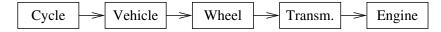
- Backward simulation
- ▶ Driving cycle \Rightarrow Losses \Rightarrow Driving force \Rightarrow Wheel torque \Rightarrow Engine (powertrain) torque $\Rightarrow ... \Rightarrow$ Fuel consumtion.
- Available tools are limited with respect to the powertrain components that they can handle.
 - The models need to be prepared for inverse simulation.
- Considering new acausal tools such as Modelica opens up possibilities.
- See also: Efficient Drive Cycle Simulation, Anders Fröberg and Lars Nielsen (2008) . . .

Two Approaches for Powertrain Simulation

Dynamic simulation (forward simulation)



- -"Normal" system modeling direction
- -Requires driver model
- Quasistatic simulation (inverse simulation)

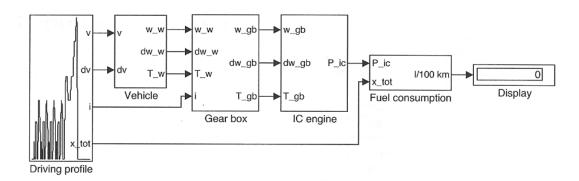


- -"Reverse" system modeling direction
- -Follows driving cycle exactly
- Model (or calculation) causality

44 / 54

QSS Toolbox - Quasistatic Approach

► IC Engine Based Powertrain



► The Vehicle Motion Equation – With inertial forces:

$$\left[m_{v} + rac{1}{r_{w}^{2}} J_{w} + rac{\gamma^{2}}{r_{w}^{2}} J_{e}
ight] rac{d}{dt} v(t) = rac{\gamma}{r_{w}} T_{e} - \left(F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t)
ight)$$

Gives efficient simulation of vehicles in driving cycles

Outline

Repetition

Driving Missions

Energy Consumption of a Driving Mission

The Vehicle Motion Equation Losses in the vehicle motion Energy Demand of Driving Missions

Energy demand

Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables Engine Efficiency

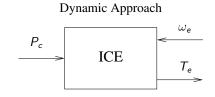
46 / 54

Causality and Basic Equations

High level modeling - Inputs and outputs

Causalities for Engine Models

Quasistatic Approach



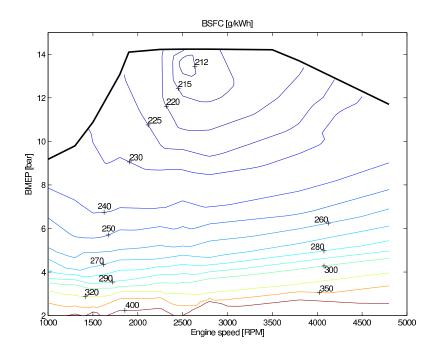
Engine efficiency

$$\eta_e = \frac{\omega_e \ T_e}{P_c}$$

▶ Enthalpy flow of fuel (Power $\dot{H}_{fuel} = P_c$)

$$P_c = \dot{m}_f \, q_{LHV}$$

Engine Efficiency Maps



Measured engine efficiency map.

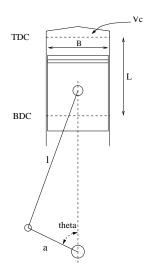
Used very often for fuel consumption assessment.

The engineering perspective, design/evaluation.

-What to do when map-data isn't available?

48 / 54

Engine Geometry Definitions



Cylinder, Piston, Connecting rod, Crank shaft

- ► Bore, B
- ▶ Stroke, S = 2a
- ► Number of cylinders *z*
- ► Cylinder swept volume, $V_d = \frac{\pi B^2 S}{4}$
- Engine swept volume, $V_D = z \frac{\pi B^2 S}{4}$
- ► Compression ratio $r_c = \frac{V_{max}}{V_{min}} = \frac{V_d + V_c}{V_c}$

Definition of MEP

- ▶ Mean Effective Pressure (MEP) = $\frac{\text{Work}}{\text{Displacement Volume}} = \frac{4 \pi T_e}{V_D}$
- ▶ MEP normalizes the work output with the size of the engine.

The engineering perspective

If we can build a good model in the MEP domain, then we can scale it with V_D and get a generic engine model, with which we can evaluate the design impact of different engine sizes.

Opens up possibilities for selecting engines for optimal fuel economy for a vehicle, etc.

Warning

Nomenclature: MEP here, p_{me} in the book.

50 / 54

Normalized Engine Variables

▶ Mean Piston Speed ($S_p = mps = c_m$):

$$c_m = \frac{\omega_e \, S}{\pi}$$

▶ Mean Effective Pressure (MEP= p_{me} ($N = n_r \cdot 2$)):

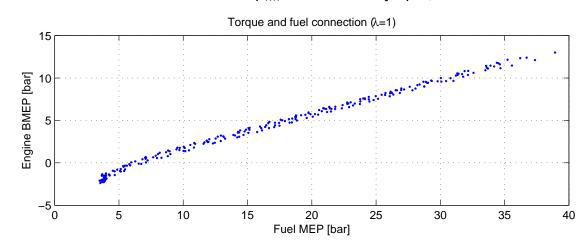
$$p_{me} = \frac{N \pi T_e}{V_d}$$

- Used to:
 - Compare performance for engines of different size
 - Design rules for engine sizing. At max engine power: $c_m \approx 17$ m/s, $p_{me} \approx 1$ e6 Pa (no turbo) \Rightarrow engine size
 - ► Connection:

$$P_e = z \, \frac{\pi}{16} \, B^2 \, p_{me} \, c_m$$

Torque modeling through - Willans Line

- Measurement data:
- x: *p_{mf}*
- y: $p_{me} = BMEP$

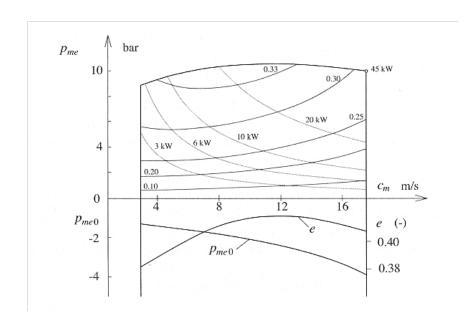


- ► Linear (affine) relationship Willans line
- ► Engine efficiency:

- $p_{me} = e(\omega_e) \cdot p_{mf} p_{me,0}(\omega_e)$
 - $\eta_{\mathsf{e}} = rac{p_{me}}{p_{mf}}$

52 / 54

Engine Efficiency – Map Representation



Willans line parameters

Engine speed dependent

- $ightharpoonup e(\omega_e)$
- $ightharpoonup p_{me,0}(\omega_e)$