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About the hand-in tasks

@ General advice
—Prepare yourselves before you go to the computer

—Make a plan (list of tasks)

@ Hand-in Format
e Electronic hand-in
e Report in PDF-format

e Reasons:
—Easy for us to comment
—Will give you fast feedback
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Outline

@ Repetition
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Energy System Overview
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W2M — Energy Paths

Fossil fuels
Numbers: CO2-factors

Oil Nat. Gas Coal i -
Solar energy Uranium
1 072 1.3
Biomass
02%
Refinery. transportation EU | Diesel | Combi | Coal | Hydro | Solar |Nuclear
PP PP PP PP PP PP PP
e A 47% | 48% | 55% | ¥% | 01% | 3% | 2%
I
-~ 1 -
Bio — Methanol
47 % Reformer Grid
B5% 5
NG —2w Methanol I:j 945

70%

NG —gm H2
T45%

‘
5% H2
Electrolysis
Compr. with electricity 6%
945

Battery, power
> Fuel cell 35 % | electronics 80 %
>

(incl. transmission losses)

drive 90%
v !

Vehicle Evvigos = 21T0-Ap-¢; + 96 ¢omy+ 1.14-m,  Klleyele (114 km) ‘

g

Diesel 22% Slengine 18% ‘
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The Vehicle Motion Equation

Newtons second law for a vehicle

S (8) = ) — (Fo(0) + Folt) + F() + Fa(1)

F: — tractive force

F, — aerodynamic drag force
F, — rolling resistance force
Fg — gravitational force

F4 — disturbance force
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Mechanical Energy Demand of a Cycle

Only the demand from the cycle

@ The mean tractive force during a cycle

_ 1 Xtot 1
Ftrac = / maX(F(X),O) dx = / F(t)v(t)dt
Xtot J0 Xtot Jtetrac
where Xior = Ot’"ax v(t)dt.

@ Note t € trac in definition.

@ Only traction.

@ Idling not a demand from the cycle.
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Evaluating the integral

Tractive force from The Vehicle Motion Equation

1
Ftrac = Epa Ar cq V2(t) +my,gc +my a(t)

Ftrac - Ftrac,a + Ftrac,r + Ftrac,m

Resulting in these sums

— 1 1
_ E ' =3
Ftrac,a — x 5 Pa Af Cd V; h
tot i€Etrac
Ftrac,r = X my g Cr g Vi h
tot iEtrac
_ 1 o
Ftrac,m = my E aivih
Xtot .
Ietrac
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Values for cycles

km/h EUDC highway cycle ]
120 | (repeat T \
100 ECE city cycle \
80 b W Ill
& L (repeat 4 times) | IL I".
,— j / \
. A 5 /
“I'lng \Jf / \
40 0 100 " 800 900 1000 1100 1200
Numerical values for the cycles: {MVEG-95, ECE, EUDC}
- 1
Xtrac,a :X Z ‘7,'3 h= {319, 82.9, 455}
tot 1€trac
— 1
Xtrac,r :X_ Z vih= {0856, 0.81, 088}
Ot e trac
— 1
Xiraen=— D, 3i¥ih= {0.101,0.126,0.086}
tot

Adopting appropriate units and packaging the results as an Equation

Emvec.os ~ Arcg1.9-10* + my ¢, 8.4 - 102 + m, 10 kJ/100km

Two Approaches for Powertrain Simulation

@ Dynamic simulation (forward simulation)

Cycle Driver Engine Transm. Wheel Vehicle

—“Normal” system modeling direction
—Requires driver model

@ Quasistatic simulation (inverse simulation)

Cycle Vehicle Wheel Transm. Engine

—"Reverse” system modeling direction
—Follows driving cycle exactly
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QSS Toolbox — Quasistatic Approach

@ |C Engine Based Powertrain

vi—p{v wow Blw_w w_gb—®w_gb
dw_w P dw_w
N dw_gb pdw_gb P_ic P_ic
x_tot
_ Vehicle i T_gbj—»T gb Fuel consumption Display
i .
Gear box IC engine
X [tot

Driving profile

@ The Vehicle Motion Equation — With inertial forces:
My + kdw+ T Je| Gv(t) = LTe— (Fa(t) + Fr(t) + Fg(t) + Fa(t))
@ Gives efficient simulation of vehicles in driving cycles
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Fuel Consumption and Range

Theoretical range calculations

primary J
energy
sources
()
upstream
energy "well-to-tank” Y
conversion
board o s °
on-boar
R S
storage °
on-board o
energy "tank-to-vehicle"
ONVOrs
conversion P
vehicle °
kinetic and potential
energy O
vehicle
" : : "
energy vehicle-to-miles

consumption

driving
and altitude
profile

A T )

Driving cycles: E [kJ/km]

Energy contents: E[J] = [ F ds[Nm] = [ P dt[Ws]
Unit conversions: 1[kWh] = 1000 - 3600[ Ws] = 3.6 MJ
Liqud Fuels: g uv[J/kgl, E = ms qruv, plkh/l]
Gasoline: qrny = 44[MJ/kg]

Batteries: Wh/kg

Lithium lon: 200-300 Wh /kg

Conventional Vehicles [I/km], cost.

Electric Vehicles [km], range.
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© Gear-Box and Clutch Models
@ Selection of Gear Ratio
@ Gear-Box Efficiency
@ Clutches and Torque Converters
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Different Types of Gearboxes

Manual Gear Box

Automatic Gear Box, with torque converter

Automatic Gear Box, with dual clutches (DCT)

°
°
@ Automatic Gear Box, with automated clutch
°
@ Continuously variable transmission
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Causality and Basic Equations

@ Causalities for Gear-Box Models

Quasistatic Approach Dynamic Approach
i v i v
w1 W w1 W
- S — - S —
GB GB
& T2 T T2
- f—— o L

@ Power balance — Loss free model

w1 = Ywo, T =—
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Connections of Importance for Gear Ratio Selection

@ Vehicle motion equation:

d 1
mvav(t) =F; — SPa Afcqgv3(t) — m, g ¢, — m, g sin(a)

Constant speed % v(t) = 0:

1 :
F, = 5Pa Arcqg v (t) + my, g ¢, + m, g sin(a)
@ A given speed v will require power F; v from the powertrain.

@ This translates to power at the engine T we.
Changing/selecting gears decouples w, and v.

@ Required tractive force increases with speed.
For a fixed gear ratio there is also an increase in required engine torque.
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Selection of Gear Ratio — Engine Centric View

Gear ratio selection connected to the engine map.

pmnc i
bar 182 km/h .
10} —— — — The gear ratio, maps the road
rf::‘"%_-—_ﬂﬁa—*‘f / load into the engine map
:immlllh-_- . | . .
| G a5 ] Selecting gear ratios helps
_ achieve goals
.l "
e kW () TOp speed = Gear 4
50 ke/h P T o
T - @ Overdrive = Gear 5 (F.E.)
— — ("HJ
[ — - T T T —
4 8 12 16 m/s
Additionally: Also geometric ratio between gears. 21 ~ £2 5 £3 &4
lg, lg,3 lg,4 lg,5
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Selection of Gear Ratio — Road Centric View

9r-

8

Gear 1

Wheel force [kN]

AZ
4+

| | |
0 50 100 150 200 250
Vehicle speed [km/h]
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Selection of Gear Ratio

Optimizing gear ratio for a certain cycle.
@ Potential to save fuel.
@ Case study 8.1 (we'll look at it later).
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Gear-box Efficiency

vehicle

@ In traction mode
T2 Ww = €gp T1 We — PO,gb(We)a T1 We > 0

@ In engine braking mode (fuel cut)
T1we = €gb Tow,, — Po’gb(we)w Tiwe <0
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Clutch and Torque Converter Efficiency

vehicle

Friction clutch torque:

T1,e(t) = T1gp(t) = Ta(t) Vt

Action and reaction torque in the clutch, no mass.
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Torque Characteristics of a Friction Clutch

Aw
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Approximation of the maximum torque in a friction clutch

T max = sign(Aw) (Tb (To—T.)- e—IAwI/Awo)



Main parameters in a Torque Converter

Input torque at the converter:

T1,e(t) = £(¢(t)) pn dp w2(t)

OIL FLOW
VELOCITY REDUCED
il TORUS ENLARGED 20%

Converter output torque

TURBINE
IMPELLER

T1,gb(t) = P(9(1)) - Toe(2)

Graph for the speed ratio ¢(t) = %, and the experimentally determined

9(@()) [E=a
LOW-SLIP ; / A_\
i STATOI
(_) \ Eg :3};’:1'53 I { :::: Aﬂnglas Available

i“ o
Plymouth press diagram =gt 5
] ARROWS INDICATE
at allpar.com L:‘i OIL FLOW DIRECTION

The efficiency in traction mode becomes

Wop T-
e = —2 18 — (8) ¢

We Tl,e
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© Analysis of IC Powertrains
@ Average Operating Point
@ Quasistatic Analysis
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Average Operating Point Method

auxiliaries & clutch

tank

o

engine

OO0

O
Il

gear box
1 I @ vehicle

| Py =iy Hy |

MNa® ”eFf

_?.]_:‘Er i?{f ; .I?{'f : EI FL'

By

@ Average operating point method
—Good agreement for conventional powertrains.

@ Hand-in assignment.
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Quasistatic analysis — Layout

X,

dv

| tot

L iy wowW bW _w w_gb—#{w_gb
dw_w P dw_w
Lyl dv T w7 w dw_gb —#dw_gb P_ic—p F’__ti;'_:t 1100 kL
_to !_:QI
Vehicle i T_gb|—»|T_gb Fuel consumption Display
Gear box IC engine

Driving profile

@ More details and better agreement (depends on model quality)
—Good agreement for general powertrains

@ Hand-in assignment.
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Quasistatic

analysis — |C Engine Structure

Pw_ic

T ic

@
w_gb

e,

B

=
Lower limit
(speed at idle)

T_gb

® w
dw_gb

Detect violation of maximum
speed and torque limits and then
stop simulation

A A

Engine ineria  Tqtal torque

=

Fuel lower
-
Engine consumption map heating value
[kg/s] |

gl
[P_ic_idie |—»14

Idle power

-
Detect idle

(criteria for passing fist input:

w_ic > w_ic_idle)

ol

Y

L

| P_ic_fco I
Power at fuel cutoff

(criteria for passing fist input:

Py

Detect fuel cutoff

T_ic> T_ic_fco)

[ P_aux }

Auxiliaries power

Quasistatic analysis — Engine Operating Points

p me

bar
10

m

m/s

.
L

Total_pE:wer
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Why is the average operating point surprisingly good?

The data is looks quite nonlinear... The Willans line approximation
—is surprisingly good for normal driving.

BSFC [g/kWh]
;

20

BMEP [bar]
= =
ol o (&)
T T T

o
T

+ model

measurement
I I

0.6 0.8 1 1.2 1.4 1.6 1.8 2
q Intake manifold pressure [bar]

I
o

BMEP [bar]
o
°
N
o
IS

1 The average value from a process

~— _ - that has variations that follow a line
— 300 4 . .
* 290, - will end up on the line.
320 +

N I I

12000 1500 2000 2500 3000 35‘00 40‘00 45‘00 5000 If We aVOid the eXtremeS It becomes a gOOd
Engine speed [RPM] . .
approximation.
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Outline

@ Other Demands on Vehicles
@ Performance and Driveability
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Performance and driveability

@ Important factors for customers

@ Not easy to define and quantify
@ For passenger cars:
e Top speed
e Maximum grade for which a fully loaded car reaches top speed

o Acceleration time from standstill to a reference speed (100 km/h or 60 miles/h are often
used)
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Top Speed Performance

@ Starting point — The vehicle motion equation.

d 1
mvav(t) =F; — SPa Af cg v3(t) — m, g ¢, — m, g sin(a)

@ At top speed

and the air drag is the dominating loss.

o power requirement (F; = Fmax):

1
Pmax = 5103 Ar cq v

Doubling the power increases top speed with 26%.
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Uphill Driving

@ Starting point the vehicle motion equation.

d 1 :
mvav(t) = F; — SPa Arcqgv3(t) — my g ¢, — m, g sin(a)

@ Assume that the dominating effect is the inclination (F; = %) gives power requirement:

Pmax = v m, g sin(«)

@ Improved numerical results require a more careful analysis concerning the gearbox and
gear ratio selection.
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Acceleration Performance

150 T T T T 300

@ Starting point:
Study the build up of kinetic energy T o
1 2

2 100

@ Assume that all engine power will build up kinetic energy
(neglecting the resistance forces)
Average power during acceleration: P = Ey/ty

Power [kW]
Torque [Nm]

@ Ad hoc relation, s/

- 1
P = - Pmax
2
Assumption about an ICE with approximately constant torque
(also including some non accounted losses) ol g
1000 2000 3000 4000 5000 6000
Speed [RPM]
m, v2

Pmax = to 35/49



Acceleration Performance — Validation

fo (s) as estimated

Published acceleration data

gasoline engines o 4
y Compared to
3> . .
o Diesel engines g Foky
Fp 2 2

4 : -+ ' N P o mv V
14 ' £ %+ 4 max — +

V4 I - 0

[ OF 4 + L8] P

+ 4+ () o 9 . .
, bg T Surprisingly good agreement
21 + o4ad o y

[ 0
48 cll 8
oA on
+ ¥, o a
10 4 ..«3_:;
L » f;g Encourages us to make simplified
g] +ofgt models
. 4 and analyses
T T T T T 1 T T 1
8 10 12 14 16
t, (s) as published 36 /49

© Optimization Problems
@ Gear ratio optimization
@ Software tools
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Optimization problems

Different problem types occur in vehicle optimization
@ Structure optimization

—What components to select and use?
@ Parametric optimization

—What are the optimal design parameters?
@ Control system optimization

—How shall the system be controlled?

Parametric optimization of the gear ratios in a conventional vehicle. \

3849

Driving cycle specification — Gear ratio

km/h } EUDC highway cycle
120 | = e
(repeat once) \
100 - ECE city cycle \
T4 J) S = — I'n
60 L (repeat 4 times) = . I".
40 2 'I : H'
20 | ' l".
n [ \ f ¢ ,
{ I|| | Ly | i i i =
40 0 100 800 900 1000 1100 1200
: t s
/ = E.._:
3
2
1 es
¢ ﬁ . Ty I
trac 5 L1 |
Number of gears and their usage is specified, but ratios free.

—How much can changed gear ratios improve the fuel economy?
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Path to the solution

Set up problem

min
s.t.

Analyze the solution.

Set up the decision variables iz ;, j € [1,5].

Implement a simulation model that calculates m¢ for the cycle.

mf(ig,lallg,2aig,3aig,47ig,5) (1)
model and cycle is fulfilled

Use an optimization package to solve (1)
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Model implemented in QSS

Conventional powertrain.

P_ic
11100 km

vi—plv w_ow Blw_w w_gb|—»{w_gb
dw_w P dw_w
avl—pldv - Sl w dw_gb—®|dw_gb P_ic
Vehicle |-> i T_gbl—»{T gb
| Gear box IC engine

X |tot

Driving profile

Efficient computations are important

Fuel consumption

Display

The simulation model is evaluated many times while we search.
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Structure of the code

opti_master.m
defines problem

initial guess u

calls fmins ———= | fmins.m
displays results forms new u
calls function ——> | opti_fun.m
L{u)
uses U to define
analyzes result new gear box
simulates vehicle
in MVEG-95 —
cycle
computes fuel
economy L(u)
Will use a similar setup, for a different problem, in hand-in assignment 2. )
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Running the solver

: , : : : 1 IS Improves the fuel consumption

with 5%.
as) 1 —Improvements of 0.5% are
worth pursuing.
g
E
< ass) .
o
]
N
g
3.5 \ T
M —
245} ' - — 1
1 1 L 1 1 1 — b
o 20 40 60 80 100 120 140 160 180

iterations
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Running the solver

18 T

16

-
.

g
5
I
|
;

1 1 7
0 20 40 60

L L L
80 100 120 140 160
number of iterations

180

Complex problem
—Global optimum not guaranteed.

Make sure you're not stuck in a bad
local minimum.

Several runs with different initial
guesses.

The optimizer shamelessly exploits
all means it has.

—The solution is always an extreme
point.

—Not necessarily good...
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Software tools

There are many tools for studying energy consumption of different vehicle propulsion systems

Quasi static | Dynamic

QSS (ETH)

Advisor, NREL—AVL
PSAT

ALPHA

VECTO

VSim (Volvo)

VTAB (Scania)

Inhouse tools

()

XX X X XX

(X)

ALPHA — Advanced Light-Duty Powertrain and Hybrid Analysis. (EPA)
VECTO - Vehicle Energy Consumption calculation TOol. (EU, HD) }
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PSAT — Argonne national laboratory
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Advisor — AVL

Bl £dr ks Hep

Wehicle Input Load Fin_||FARMLEL delsli x e fubafin
Divetian Conlig E?rl:!ual . b mﬁmm;-ml:l
e il [l
Whiche 'i = | JVEH_SMEER - e
FurCormrmns Il =] AT = [FE S eme =T Bomf
| Esanees | =] 2 =] [oes =] i
Erevay Stoesce_ il =] 1 [[pb_v]|E55 P25 =l = || 8 | 2w
Ereegy Siciage 2 B3| | EE -]
- Molor Bk | [T = s Jom| @
Mokoe 2 B =] . -
Clater - |17 B -
danor Positiont o I i tion il e J ki j d
Tisnenicsicn _|[man =] |[man =] (T 5500 =] O B
Component Flot Selection ——— m|E; = = =
[luel_cumvmben =] [l sllicincy =l v 5 =BT - |
e o e | s | | T '
00 . . . . . 3 \Wihesliiode [ _l € - Iv_msnm - [1}
accenson |[Cons ] 2 | Cenat ] [ACE_jivariD =]
e T T B B : =]
-‘;9'3’ S el ¢ Elctic |E2 ;
E ,-,\-— \.\} It | Pewsertroin Coneed |[pw = | 7 Jlman = |{PTC_PAR =]
3 S e L=
F i 1350
= p2 - Vi Block Diags OD_FAR
0 il
NS T
1 . L ) ) Save Helo
0 1000 2000 3000 4000 5000 6000 s, commiien = EditVar, -
Speed frpm) e = B Bk Setiioes
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Information from AVL:

@ The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) first
developed ADVISOR in 1994.

@ Between 1998 and 2003 it was downloaded by more than 7,000 individuals, corporations,
and universities world-wide.

@ In early 2003 NREL initiated the commercialisation of ADVISOR through a public
solicitation.

@ AVL responded and was awarded the exclusive rights to license and distribute ADVISOR
world-wide.
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