Vehicle Propulsion Systems Lecture 3

Conventional Powertrains with Transmission Performance, Tools and Optimization

> Lars Eriksson Professor

Vehicular Systems Linköping University

April 2, 2024

About the hand-in tasks

- General advice
 - Prepare yourselves before you go to the computerMake a plan (list of tasks)
- Hand-in Format
 - Electronic hand-in
 - Report in PDF-format
 - Reasons:
 - -Easy for us to comment
 - -Will give you fast feedback

Outline

Repetition

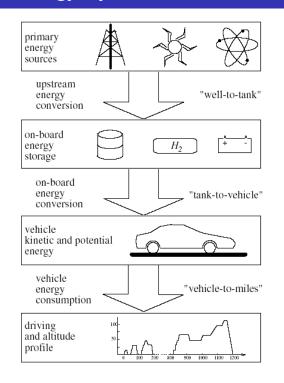
2 Gear-Box and Clutch Models

- Selection of Gear Ratio
- Gear-Box Efficiency
- Clutches and Torque Converters

3 Analysis of IC Powertrains

- Average Operating Point
- Quasistatic Analysis

Other Demands on Vehicles


• Performance and Driveability

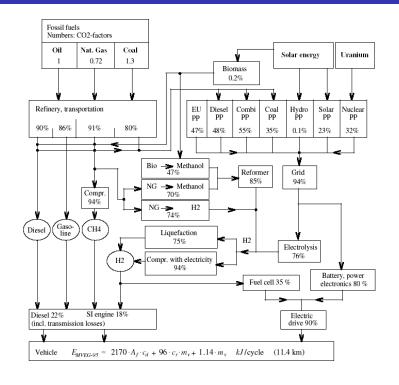
Optimization Problems

- Gear ratio optimization
- Software tools

4 / 49

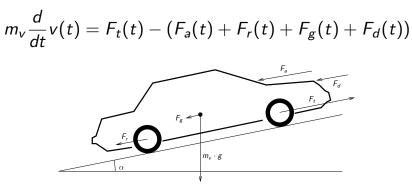
Energy System Overview

Primary sources


Different options for on-board energy storage

Powertrain energy conversion during driving

Cut at the wheel!


Driving mission has a minimum energy requirement.

W2M – Energy Paths

The Vehicle Motion Equation

Newtons second law for a vehicle

- F_t tractive force
- F_a aerodynamic drag force
- F_r rolling resistance force
- F_g gravitational force
- F_d disturbance force

Mechanical Energy Demand of a Cycle

Only the demand from the cycle

• The mean tractive force during a cycle

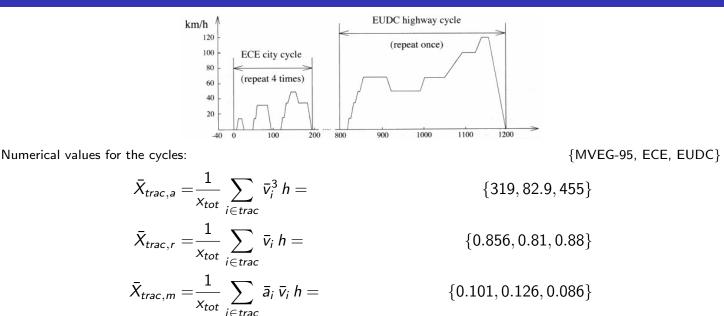
$$\bar{F}_{trac} = \frac{1}{x_{tot}} \int_0^{x_{tot}} \max(F(x), 0) \, dx = \frac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) \, dt$$

where $x_{tot} = \int_0^{t_{max}} v(t) dt$.

- Note $t \in trac$ in definition.
- Only traction.
- Idling not a demand from the cycle.

8	/	49

Evaluating the integral

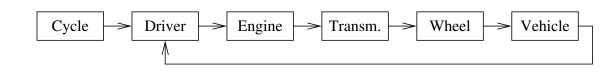

Tractive force from The Vehicle Motion Equation

$$F_{trac} = \frac{1}{2} \rho_a A_f c_d v^2(t) + m_v g c_r + m_v a(t)$$
$$\bar{F}_{trac} = \bar{F}_{trac,a} + \bar{F}_{trac,r} + \bar{F}_{trac,m}$$

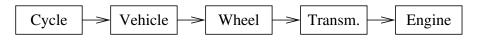
Resulting in these sums

$$\bar{F}_{trac,a} = \frac{1}{x_{tot}} \frac{1}{2} \rho_a A_f c_d \sum_{i \in trac} \bar{v}_i^3 h$$
$$\bar{F}_{trac,r} = \frac{1}{x_{tot}} m_v g c_r \sum_{i \in trac} \bar{v}_i h$$
$$\bar{F}_{trac,m} = \frac{1}{x_{tot}} m_v \sum_{i \in trac} \bar{a}_i \bar{v}_i h$$

Values for cycles



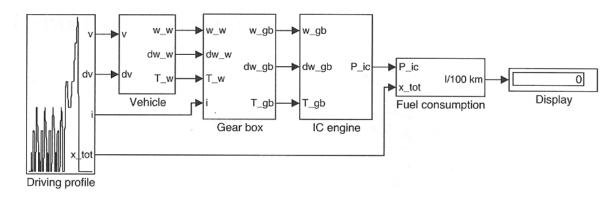
Adopting appropriate units and packaging the results as an Equation


$ar{E}_{ ext{MVEG-95}} pprox A_f \ c_d \ 1.9 \cdot 10^4 + m_v \ c_r \ 8.4 \cdot 10^2 + m_v \ 10$	kJ/100 km	10 / 49
--	-----------	---------

Two Approaches for Powertrain Simulation

• Dynamic simulation (forward simulation)

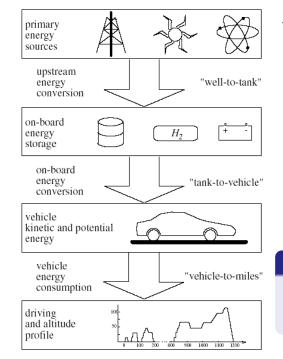
- "Normal" system modeling direction
- -Requires driver model
- Quasistatic simulation (inverse simulation)



-"Reverse" system modeling direction

-Follows driving cycle exactly

QSS Toolbox – Quasistatic Approach


• IC Engine Based Powertrain

- The Vehicle Motion Equation With inertial forces: $\left[m_v + \frac{1}{r_w^2}J_w + \frac{\gamma^2}{r_w^2}J_e\right]\frac{d}{dt}v(t) = \frac{\gamma}{r_w}T_e - (F_a(t) + F_r(t) + F_g(t) + F_d(t))$
- Gives efficient simulation of vehicles in driving cycles

12 / 49

Fuel Consumption and Range

Theoretical range calculations

- Driving cycles: E [kJ/km]
- Energy contents: $E[J] = \int F ds[Nm] = \int P dt[Ws]$
- Unit conversions: $1[kWh] = 1000 \cdot 3600[Ws] = 3.6MJ$
- Liqud Fuels: $q_{LHV}[J/kg]$, $E = m_f q_{LHV}$, $\rho[kh/l]$
- Gasoline: $q_{LHV} = 44[MJ/kg]$
- Batteries: Wh/kg
- Lithium Ion: 200-300 Wh/kg

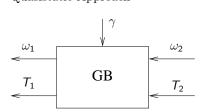
New Mindset

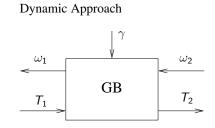
- Conventional Vehicles [I/km], cost.
- Electric Vehicles [km], range.

Outline

Repetition

- 2 Gear-Box and Clutch Models
 - Selection of Gear Ratio
 - Gear-Box Efficiency
 - Clutches and Torque Converters
- 3 Analysis of IC Powertrains
 - Average Operating Point
 - Quasistatic Analysis
- 4 Other Demands on Vehicles
 - Performance and Driveability
- **5** Optimization Problems
 - Gear ratio optimization
 - Software tools


14 / 49


Different Types of Gearboxes

- Manual Gear Box
- Automatic Gear Box, with torque converter
- Automatic Gear Box, with automated clutch
- Automatic Gear Box, with dual clutches (DCT)
- Continuously variable transmission

Causality and Basic Equations

• Causalities for Gear-Box Models Quasistatic Approach

• Power balance - Loss free model

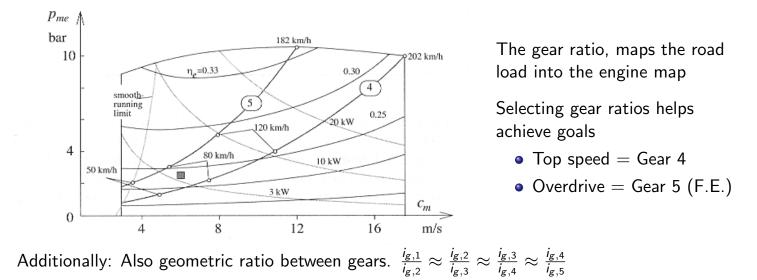
$$\omega_1 = \gamma \omega_2, \qquad T_1 = \frac{T_2}{\gamma}$$

16 / 49

Connections of Importance for Gear Ratio Selection

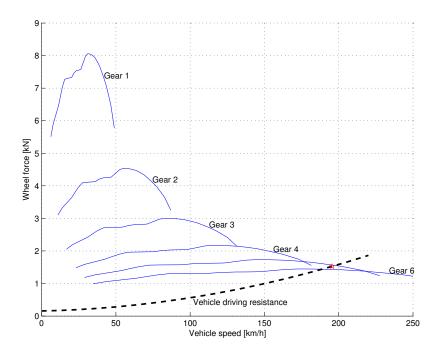
• Vehicle motion equation:

$$m_v \frac{d}{dt} v(t) = F_t - \frac{1}{2} \rho_a A_f c_d v^2(t) - m_v g c_r - m_v g \sin(\alpha)$$


Constant speed $\frac{d}{dt}v(t) = 0$:

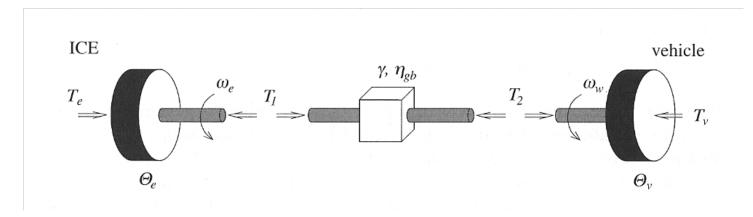
$$F_t = \frac{1}{2}\rho_a A_f c_d v^2(t) + m_v g c_r + m_v g \sin(\alpha)$$

- A given speed v will require power $F_t v$ from the powertrain.
- This translates to power at the engine *T_e ω_e*. Changing/selecting gears decouples *ω_e* and *v*.
- Required tractive force increases with speed.
 For a fixed gear ratio there is also an increase in required engine torque.


Selection of Gear Ratio – Engine Centric View

Gear ratio selection connected to the engine map.

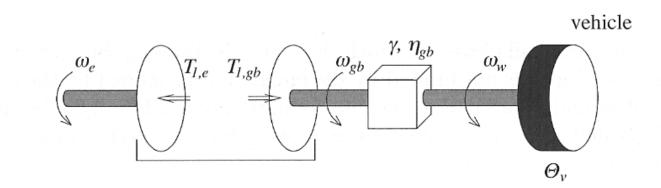
18 / 49


Selection of Gear Ratio – Road Centric View

Optimizing gear ratio for a certain cycle.

- Potential to save fuel.
- Case study 8.1 (we'll look at it later).

Gear-box Efficiency

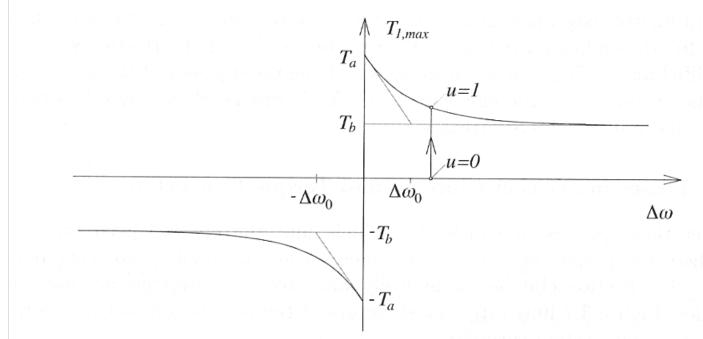

In traction mode

 $T_2 \, \omega_w = e_{gb} \, T_1 \, \omega_e - P_{0,gb}(\omega_e), \qquad T_1 \, \omega_e > 0$

• In engine braking mode (fuel cut)

 $T_1 \, \omega_e = e_{gb} \, T_2 \, \omega_w - P_{0,gb}(\omega_e),, \qquad T_1 \, \omega_e < 0$

Clutch and Torque Converter Efficiency


Friction clutch torque:

$$T_{1,e}(t) = T_{1,gb}(t) = T_1(t) \ \forall t$$

Action and reaction torque in the clutch, no mass.

22 / 49

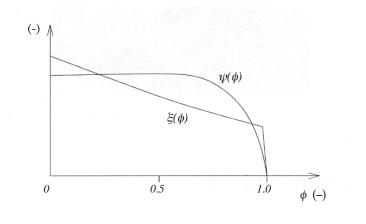
Torque Characteristics of a Friction Clutch

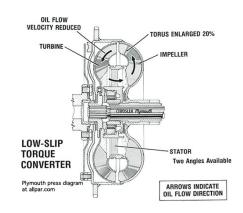
Approximation of the maximum torque in a friction clutch

$$T_{1,max} = \operatorname{sign}(\Delta \omega) \left(T_b - (T_b - T_a) \cdot e^{-|\Delta \omega|/\Delta \omega_0}
ight)$$

23 / 49

Main parameters in a Torque Converter


Input torque at the converter:


$$T_{1,e}(t) = \xi(\phi(t)) \rho_h d_p^5 \omega_e^2(t)$$

Converter output torque

$$T_{1,gb}(t) = \psi(\phi(t)) \cdot T_{1,e}(t)$$

Graph for the speed ratio $\phi(t)=\frac{\omega_{gb}}{\omega_e}$, and the experimentally determined $\psi(\phi(t))$

The efficiency in traction mode becomes

$$\eta_{tc} = rac{\omega_{gb} T_{1,gb}}{\omega_e T_{1,e}} = \psi(\phi) \phi$$

24 / 49

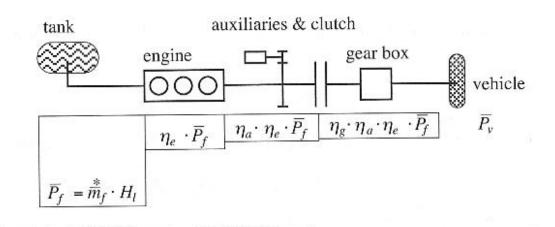
Outline

Repetition

- 2 Gear-Box and Clutch Models
 - Selection of Gear Ratio
 - Gear-Box Efficiency
 - Clutches and Torque Converters

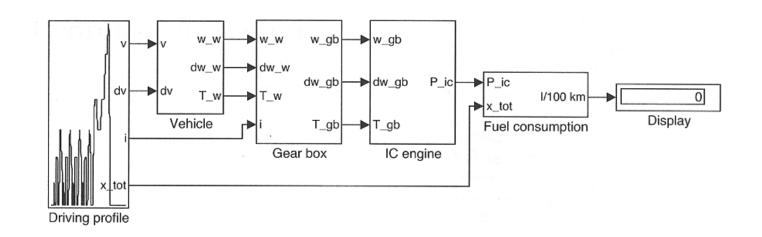
3 Analysis of IC Powertrains

- Average Operating Point
- Quasistatic Analysis


Other Demands on Vehicles

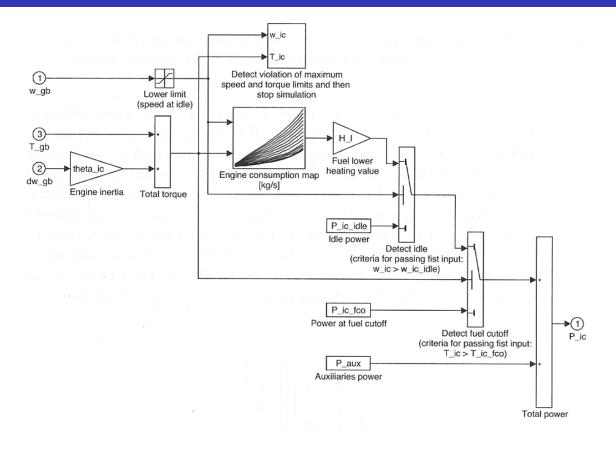
• Performance and Driveability

5 Optimization Problems

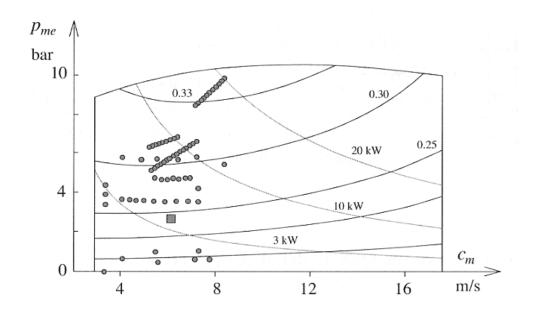

- Gear ratio optimization
- Software tools

Average Operating Point Method

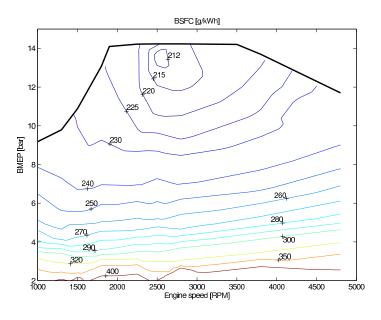
- Average operating point method
 -Good agreement for conventional powertrains.
- Hand-in assignment.


Quasistatic analysis – Layout

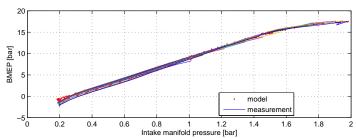
- More details and better agreement (depends on model quality)
 -Good agreement for general powertrains
- Hand-in assignment.


26 / 49

Quasistatic analysis – IC Engine Structure


28 / 49

Quasistatic analysis – Engine Operating Points



Why is the average operating point surprisingly good?

The data is looks quite nonlinear...

The Willans line approximation -is surprisingly good for normal driving.

The average value from a process that has variations that follow a line will end up on the line.

If we avoid the extremes it becomes a good approximation.

30 / 49

Outline

Repetition

- 2 Gear-Box and Clutch Models
 - Selection of Gear Ratio
 - Gear-Box Efficiency
 - Clutches and Torque Converters
- 3 Analysis of IC Powertrains
 - Average Operating Point
 - Quasistatic Analysis

Other Demands on VehiclesPerformance and Driveability

- 5 Optimization Problems
 - Gear ratio optimization
 - Software tools

- Important factors for customers
- Not easy to define and quantify
- For passenger cars:
 - Top speed
 - Maximum grade for which a fully loaded car reaches top speed
 - Acceleration time from standstill to a reference speed (100 km/h or 60 miles/h are often used)

Top Speed Performance

• Starting point – The vehicle motion equation.

$$m_{v}\frac{d}{dt}v(t) = F_{t} - \frac{1}{2}\rho_{a}A_{f}c_{d}v^{2}(t) - m_{v}gc_{r} - m_{v}g\sin(\alpha)$$

At top speed

$$\frac{d}{dt}v(t)=0$$

and the air drag is the dominating loss.

• power requirement $(F_t = \frac{P_{max}}{v})$:

$$P_{max} = \frac{1}{2} \rho_a A_f c_d v^3$$

Doubling the power increases top speed with 26%.

Uphill Driving

• Starting point the vehicle motion equation.

$$m_v \frac{d}{dt} v(t) = F_t - \frac{1}{2} \rho_a A_f c_d v^2(t) - m_v g c_r - m_v g \sin(\alpha)$$

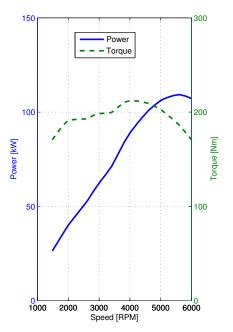
• Assume that the dominating effect is the inclination $(F_t = \frac{P_{max}}{v})$, gives power requirement:

$$P_{max} = v m_v g \sin(\alpha)$$

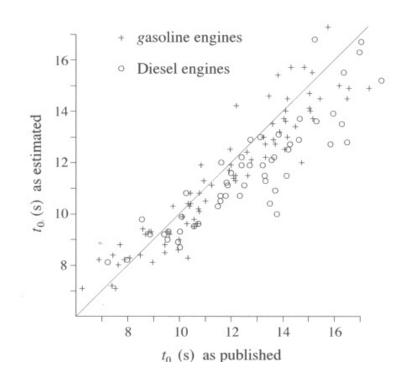
 Improved numerical results require a more careful analysis concerning the gearbox and gear ratio selection.

Acceleration Performance

• Starting point: Study the build up of kinetic energy


$$E_0 = rac{1}{2} m_v v_0^2$$

- Assume that all engine power will build up kinetic energy (neglecting the resistance forces) Average power during acceleration: $\bar{P} = E_0/t_0$
- Ad hoc relation,


$$\bar{P} = \frac{1}{2} P_{max}$$

Assumption about an ICE with approximately constant torque (also including some non accounted losses)

$$P_{max} = \frac{m_v v^2}{t_0}$$

Acceleration Performance – Validation

Published acceleration data

Compared to

$$P_{max} = \frac{m_v v^2}{t_0}$$

Surprisingly good agreement

Encourages us to make simplified models and analyses

36 / 49

Outline

Repetition

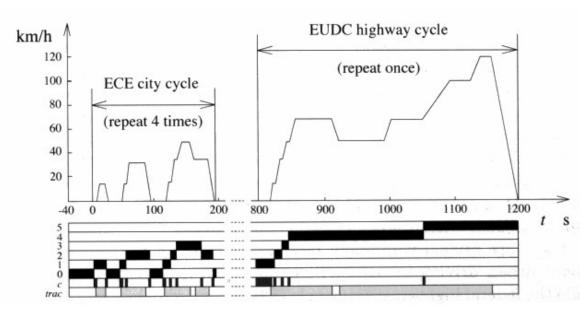
- 2 Gear-Box and Clutch Models
 - Selection of Gear Ratio
 - Gear-Box Efficiency
 - Clutches and Torque Converters
- 3 Analysis of IC Powertrains
 - Average Operating Point
 - Quasistatic Analysis

4 Other Demands on Vehicles• Performance and Driveability

5 Optimization Problems

- Gear ratio optimization
- Software tools

Optimization problems


Different problem types occur in vehicle optimization

- Structure optimization
 What components to select and use?
- Parametric optimization
 What are the optimal design parameters?
- Control system optimization
 How shall the system be controlled?

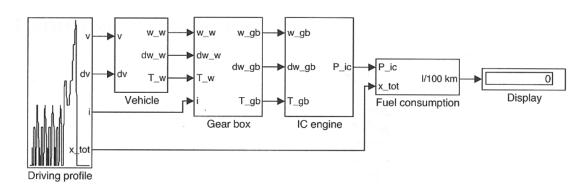
Next up

Parametric optimization of the gear ratios in a conventional vehicle.

Driving cycle specification – Gear ratio

Number of gears and their usage is specified, but ratios free. -How much can changed gear ratios improve the fuel economy?

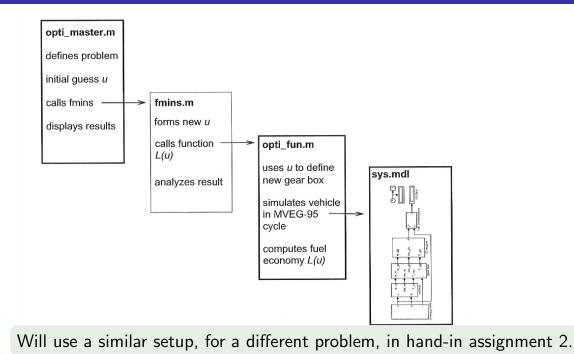
Path to the solution


- Implement a simulation model that calculates m_f for the cycle.
- Set up the decision variables $i_{g,j}$, $j \in [1, 5]$.
- Set up problem

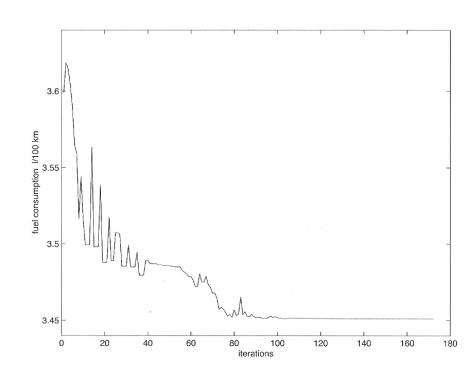
min	$m_f(i_{g,1}, i_{g,2}, i_{g,3}, i_{g,4}, i_{g,5})$	(1)
s.t.	model and cycle is fulfilled	(1)

- Use an optimization package to solve (1)
- Analyze the solution.

Model implemented in QSS

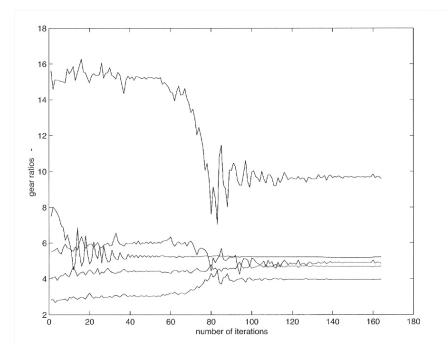

Conventional powertrain.

Efficient computations are important


The simulation model is evaluated many times while we search.

Structure of the code

42 / 49


Running the solver

Improves the fuel consumption with 5%.

-Improvements of 0.5% are worth pursuing.

Running the solver

Complex problem -Global optimum not guaranteed.

Make sure you're not stuck in a bad local minimum.

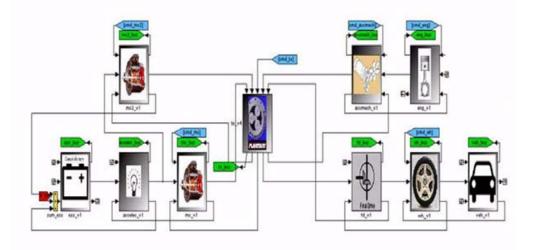
Several runs with different initial guesses.

The optimizer shamelessly exploits all means it has.

-The solution is always an extreme point.

-Not necessarily good...

44 / 49


Software tools

There are many tools for studying energy consumption of different vehicle propulsion systems

	Quasi static	Dynamic
QSS (ETH)	Х	
Advisor, NREL $ ightarrow$ AVL	X	(X)
PSAT		Х
ALPHA		X
VECTO		X
VSim (Volvo)		X
VTAB (Scania)		X
· · · /		
Inhouse tools	(x)	(X)

ALPHA – Advanced Light-Duty Powertrain and Hybrid Analysis. (EPA) VECTO – Vehicle Energy Consumption calculation TOol. (EU, HD)

PSAT – Argonne national laboratory

46 / 49

Advisor – AVL

/ehicle Input		LoadFile	PARAL	LEL	del	aulto in	1				uto-Size	
		Divetan Confg perallel *									Compo	-
		Divetian Cont	100	sion	el .	to an				max pw [kW]	peak ef	f m
	it.	Vehicle	NO.	-	2	type		VEH SMCAR		(Kvv)		
	R	Fuel Converter	lic	-	2	si		FC_SI41_emis		41	0.34	
	17	Exhaust Aftertreat	-	-	?	-	Ŧ	DC SI	*		d V nom	
	IN I	Energy Storage	tint	-	2	pb	*	ESS P925		25	308	
6 		Energy Storage 2		-	2	-	1	mn 2 retices				
	V	Motor	1		?	1	•	MC_AC75		75	0.92	
		Motor 2		*	?		+	motor 2 cotions			-	
		Starter		4	2	-	-	statie obtors				
Motor Position: pre-transmission		Generator			?		$\overline{\mathbf{T}}$	pc optional	4			
	191	Transmission	man	*	7	man	٠	TX_5SPD		1	1	
Component Plot Selection		Transmission 2		Υ.	?		$[\pi]$	In sing 2 options	14			
Tuel_converter 💌 Tc_efficiency		Elulch/Tong Conv.			?	1		abite fritting og an ande	1			
Fuel Converter Operation Geo 1 DL (41KW) SI Engine - transient data	Jee	Torque Coupling		-	?		-	TC_DUMMY			1	
100	R	Wheel/Ade	Cir	٠		Сn	٠	WH_SMCAR	٠			
80 p.25 p.24	1	Accessory	Con		?	Const		ACC_HYBRID	•			
		Acc Electrical		X	?		×	acc elec options	1			
		Powertrain Control	par	-	2	man		PTC_PAR	-			

Information from AVL:

- The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) first developed ADVISOR in 1994.
- Between 1998 and 2003 it was downloaded by more than 7,000 individuals, corporations, and universities world-wide.
- In early 2003 NREL initiated the commercialisation of ADVISOR through a public solicitation.
- AVL responded and was awarded the exclusive rights to license and distribute ADVISOR world-wide.