Vehicle Propulsion Systems

Lecture 5
Deterministic Dynamic Programming and Some Examples

Lars Eriksson
Professor

Vehicular Systems
Linképing University

April 11, 2024

1/47

0 Repetition

2/47

Energy consumption for cycles

¥ km'h EUDC highway cycle

120 - =

(repeat once)

W00 ECE city eyele

%0 L = -

go L {repeat 4 times)

40+ /‘L [/

.l IR [[\

ﬂ ! ll | .)) L) .
40 0 100 200 800 900 1000 1100 1200

Numerical values for MVEG-95, ECE, EUDC

air drag 1 > vh= {319,82.9,455}
Xtot ietrac
rolling resistance 1 > vih= {.856,0.81,0.88}
th ietrac
kinetic energy 1 > avih= {0.101,0.126,0.086}
th i€trac

Ewveges ~ Arcg1.9-10* + myc,8.4-102+ m, 10 kJ/100km

3/47

Hybrid Electrical Vehicles — Parallel

@ Two parallel energy paths

4/47

Hybrid Electrical Vehicles — Serial

@ Two paths working in series
@ Decoupled through the battery

5/47

Component modeling

@ Model energy (power) transfer and losses

@ Using maps n = f(T,w)
Combustion englne map Electric motor map

Map polnts BSFC [9/kWh]

328 1:/7 o ' 600
. T azg
* 216 8 max. torque (motor mode)
300 | \ /\ 276 B 550
T 248 \/\ 248 efficiency
isolines
250 - 500
- ’ : 227.
E <
; 220
% . % , A q . , o 450
S &
o ‘v 5082
8 N . o
H 400 = -
g Z .
é, 150 . . _ 8 rotational speed
w <
s T e 350 0.86
100 : . : - 0.84
r . %
— " - '7’ . 'LA% ' 0.82 —
g \/'—/ B . 276 — 300
e .. 0.8
sof . o —— 5" PR e "
o 8% —— s . max. torque (generator mode
427~ 42— 421 —] que (g)
‘‘‘‘‘ . . .
1000 1500 2000 2500 3000 3500 4000 4500 ——

Engine speed [rpm]

@ Using parameterized (scalable) models
—Willans approach
6/47

Battery — Standard model in this course

O
Simple model for the battery R,
—Open circuit voltage Uyc(SOC)
—State of charge SOC, (Q/Qmax) —— U U
T oc
Output voltage I
dQ °
U> = UOC(SOC) — R b E =—b O

To protect the battery we need to:

@ impose limits on the current.

How fast is the battery (pack) charged. @ avoid emptying the battery completely
@ C=1, full capacity in 1 hour. @ avoid over filling the battery
Separate lecture on batteries will come in May — New Course will start 2025 J

7147

Voltage and SOC

Legend

3.54

= LiFeP0O4 1.5Ah @ 6A
= LiFePO4 1.5 Ah @ 12A
—— LiFePO4 1.5 Ah @ 18A

— A123 1.1 Ah @ 6A

Volts

—— A123 1.1 Ah @ 12A
— A123 1.1 Ah @ 18A

T T T T T T T
e = & M Www w @ & @ a Qg =
& © o O o0 e d o a9 « ~

AmpHrs

Typical characteristics. Can extract inner resistance, and capacity.
(Image source: batteryuniversity.com)

8/47

Two important battery estimation problems

Legend

3.5+

= LiFePO4 1.5Ah @ BA

= LiFePO4 1.5 Ah @ 12A

i s — —— LiFeP0O4 1.5 Ah @ 18A
\\ \ —— A123 1.1 Ah @ BA
2.0+ ' — A1231.1Ah @ 124

—— A123 1.1 Ah @ 18A

Volts

T T T T T T T L
- &8 O = ¥ @ ~ @ a g9 =
s o o & 8 e &8 e o = -

AmpHrs

@ SOC — State of Charge. Current and voltage sensing.
@ SOH - State of Health. Cycle monitoring, current and voltage sensing.
@ Prolonging life: Temperature monitoring and current limits important.

9/47

Model implemented in QSS

Conventional powertrain

vi—pv wW_w B w_w w_gb—mw_gb
dw w P w
dvl—p{dv T w ol T w dw_gb—®dw gb P_ic—®P_ic 1100 ket lepl
. Vehicle i T.go—™T gb Fuel consumption Display
| Gear box IC engine

X [tot

Driving profile

Efficient computations are important
—For example if we want to do optimization and sensitivity studies.

10/47

e “Traditional” Optimization
@ Different Classes of Problems
@ An Example Problem

11/47

Optimization — Linear Programming

@ Linear problem

min ¢’ x

X

st. Ax = b
x >0

@ Convex problem
@ Much analyzed: existence, uniqueness, sensitivity
@ Many algorithms: Simplex the most famous

@ About the word Programming
—The solution to a problem was called a program

12/47

Optimization — Non-Linear Programming

@ Non-linear problem

mXin f(x)
st. gx) = 0
x >0

@ For convex problems
—Much analyzed: existence, uniqueness, sensitivity.

—Many (fast) algorithms.

@ For non-convex problems
—Some special problems have unique solutions
—Local optimum is not necessarily a global optimum

@ As engineers you need a methodology to ensure that you get a good solution.

Industry is not always interested in The Optimal solution
—more often a Good Solution is enough. J

13/47

Mixed Integer and Combinatorial Optimziation

@ Problem
mxin f(x,y)
st. glx,y) = O
X > 0
y e Zt

@ Inherently non-convex y
Generally hard problems to solve.

@ Much analyzed
—Existence, uniqueness, sensitivity
—Many types of problems
—Many algorithms are available

14/47

An Example Problem — With Interesting Properties

What gear ratios give the lowest fuel consumption for a given drivingcycle?
—Problem presented in appendix 8.1

km/h } EUDC highway cycle
120 = .

_ (repeat once) \
100 - ECE city cycle I".
80 b =

|
60 | (repeat 4 times) .-fl _\—f I".

I Ilr |
40 Lk \
] l'j I ['
20 - J || ' .,
nor \‘ |IJ \l I"II |
V] 1. | \ | : :) =
A 200 800 900 1000 1100 1200
. . I g
s = S.—:
3 R
2
1
. ﬁ !lu I
.'m: L1 -

Problem characteristics
@ Countable number of free variables, iy, j € 1, 5]
@ A “computable” cost, my(---)
@ A “‘computable” set of constraints, model and cycle
@ The formulated problem

15/47

- min Mi(lg,1, g2, ig.3, g4 lg5)
Ig,j» 16[1 75]

Some comments on practical optimiztion

General process

@ Find the “right” problem formulation

e Model of the system
e Important properties, and your goal
e Constraints: What do you want to aviod

@ Find and use the right solver for the problem
@ Analyze the solution and (perhaps) reconsider the problem and iterate

Fundamental Issues that you Should be Aware Of
@ All optimal solutions are extreme points

@ The optimizer (solver) will shamelessly exploit all weaknesses of your model and
problem formulation

@ That’s why you often need to reconsider the problem formulation

| A

16/47

© Optimal Control
@ Problem Motivation

17/47

Optimal Control — Problem Motivation

Car with gas pedal u(t) as control input:
How to drive from A to B on a given time with minimum fuel consumption?

@ Infinite dimensional decision variable u(t).
@ Cost function f(ff me(t)dt

@ Constraints:
e Model of the car (the vehicle motion equation)

Ft(V(t(),)U(t)) —(Fa(v(t)) + Fr(v(1)) + Fo(x(1)))
v(t
f(v(t), u(t))

my, Zv(t)
ax®
myg

Starting point x(0) = A

End point x(&) = B

Speed limits v(t) < g(x(t))

e Limited control action 0 < u(t) <1

@ Difficult problem to solve analytically, only some special cases are solvable.

18/47

General problem formulation

@ Performance index
ty

J(u) = o(x(tp), tp) + [L(x(1), u(t), t)at

ta

@ System model (constraints)

O x= (). 00,0, x(ta) = x
@ State and control constraints
u(t) € U(t)
x(t) € X(1)

19/47

Optimal Control — Historical Perspective

@ Old subject

@ Rich theory

e Old theory from calculus of variations
e Much theory and many methods were developed during 50’s-70’s
e Theory and methods are still being actively developed

@ Dynamic programming, Richard Bellman, 50’s.

@ A modern success story:
—Model predictive control (MPC)

@ Now a new interest for collocation methods:
—A few during 1990’s
—Much interest 2000—

Separate Course = TSRT08 Optimal Control J

20/47

e Deterministic Dynamic Programming
@ Problem setup and basic solution idea
@ Cost Calculation — Two Implementation Alternatives

21/47

Dynamic programming — Problem Formulation

@ Optimal control problem

b
min J(U) = ¢(x(tp), tp) +/ L(x(t),u(t), t)dt

ta

s.t. gx = f(x(t),u(t), 1)

dt

X(t3) = Xa
u(t) € U(t)
x(t) € X(1)

@ x(1), u(t) functions on t € [t, tp]
@ Search an approximation to the solution by discretizing

e the state space x(t)
e and maybe the control signal u(t)

in both amplitude and time.
@ The result is a combinatorial (network) problem

22/47

Dynamic Programming (DP) — Problem Formulation

@ Find the optimal control sequence 7°%(xq) = {up, U1, . .., Uy_1 } minimizing:
N—1
J(X0) = gn(Xn) + > Gk(Xk: Uk, W)
k=0
@ subject to:

Xi+1 = Fie(X, U, Wi)
Xo = X(t = 0)
Xk € Xk
Uk € Uk

@ Disturbance wy

@ Stochastic vs Deterministic DP
23/47

DDP — Basic Algorithm

N—1

J(x0) = gnOw) + D k(X U)
k=0

X1 = fe(Xk, Uk)

Bellman’s Theory and Algorithm:
—Start at the end and proceed backward in time

—Determine the optimal cost-to-go
—Store the corresponding control signal

R N S)

2

k=0 1

24/47

DDP — Basic algorithm

N—-1

J(x0) = gn(xn) + Z 9k (X, Uk)
k=0

X1 = Fe(Xk, Uk)

Algorithm:
@ Set k = N, and assign final cost Jy(xn) = gn(Xn)
Q@ Setk=k—1
© For all points in the state-space grid, find the optimal cost to go
Jk(Xk) = min gr(Xk, Uk) + Jkr1(Fe(Xk, Uk))
Uk € Uk (xk)

© If kK = 0 then return solution
© Gotostep?2

25/47

Deterministic Dynamic Programming — Basic Algorithm

Fundamental idea
Construct the Cost-to-go by solving small subproblems.

Graphical illustration of the solution procedure

X JN(XN)

° ° ° ° ° ° 2 0 ° ® 2
2

° ° ° ° ° ° ° e 1
4

° ° ° ° ° ° ° e 0

° ° [} ° o ° [} ° o 1

° ° ° ° ° ° ° ° ® 2

° ° ° ° o ° ° ° e 3

k=0 1 2 N-—1 N 1
t t t

o~
ST

26/47

Arc Cost Calculations

For an arc
@ You know where you are
@ also know all places you can go to
There are two ways for calculating the arc costs

@ Calculate the exact control signal and cost for each arc
—Quasi-static approach

@ Make a grid over the control signal and interpolate the cost for each arc
—Forward calculation approach

Matlab implementation — it is important to utilize matrix calculations
@ Calculate the whole bundle of arcs in one step
@ Add boundary and constraint checks

27/47

Pros and Cons with Dynamic Programming

Pros
@ Globally optimal, for all initial conditions
@ Can handle nonlinearities and constraints
@ Time complexity grows linearly with horizon
@ Use output and solution as reference for comparison
Cons
@ Non causal
@ Time complexity grows “exponentially” with number of states, curse of dimensionality
@ 2-3 states are often at the limit

28/47

Calculation Example

@ Problem 200s with discretization At = 1s.
@ Control signal discretized with 10 points.
@ Statespace discretized with 1000 points.

@ One evaluation of the model takes 1us
@ Solution time:

e Brute force:

Evaluate all possible combinations of control sequences.

Number of evaluations, 10%%° gives ~ 3 - 10" years. (Universe is ~ 13.8 - 10° years.)
e Dynamic programming:

Number of evaluations: 200 - 10 - 1000 gives 2 s.

(Example contributed by ETH)

29/47

e Hand-In Task 2
@ The Provided Tools
@ Case Studies

30/47

Hand-In Task 2 — Energy Management of Two Hybrids

Optimize the fuel consumption of 2 hybrids over driving cycles, using DDP)

Parallel Hybrid

Series Hybrid

One degree of freedom Two degrees of freedom
— SOC, main control variable — SOC, main control variable
— Engine speed is given by the cycle — Engine speed can be freely selected

31/47

The Provided Tools for Hand-in 2 and the Goals

Tasks and Tools
Investigate optimal control of one parallel and one series hybrid configuration in different
driving profiles

@ Some Matlab-functions provided

e Skeleton file for defining the problems
@ 2 DDP solvers, 1-dim and 2-dim.
e 2 skeleton files for calculating the arc costs for parallel and serial hybrids

Solve the problems, analyze the solutions, see if they are generalizable

Learning Goals
@ Knowledge about operation modes of different hybrid topologies
@ Experience in modeling of hybrid electric vehicles
@ Experience from working and solving an optimal control problem
@ See the benefits of different hybrid topologies

| A

32/47

Tools

DDP Solver —
dynProglD.m

Problem setup —
testHybrids.m

—Your Analysis Task

—Given

Arc Calculator —
parallelHybrid.m
—Your main
Implementation Task

33/47

Your Implementation Task 1 — The process of constructing a solution

You will implement the arc cost calculations, for a bundle of arcs.

0.51
0.505
0.5
., 0.495
U 049
o
)
0.485
0.48

0.475

0.47
0

50

Velocity [km/h]

1 I
60 80 100

1
160

L
180 200

34/47

Your Implementation Task 1 — The process of constructing a solution

Upgrading to Series-Hybrid — 2 DoF

1D arc bundles — 2D arc bundles
SoC tn 4pt tnig

M

we F funcbion that colewlates

= .
all are-costs as a 2AD-matdk, Finishe GL

35/47

Your Implementation Task 2 — Unwiding the Solution

The functions dynProg1D and dynProg2D returns

@ The cost to go function values and solution steps
@ Solution: Information about the next step

@ Unwind: Start from the initial value and follow the path to the end

36/47

Unwiding the Solution

SOC[-]

t T
20 40

Velocity [km/h]

/ \ I I [
0 20 40 60 80 100 120 140 160 180 200
Time [s]

37/47

Numerical Accuracy

DDP guarantees a global solution — but only within the discretization
More accurate discretization might be needed to see the details in a solution

0.51 ———
0.505

05

0.495

0.49

50C[-]

0.485

0.48

0.475

0.47 =/ i |
0 200

Velocity [km/h]

Time [s]

38/47

Unwided Solution — Higher Accuracy

0.5

0.498

0.496

SOC [-]

0.494

0.492

0.49 = e
0

20 40 60 80 100

50 ;

120

160 180 200

30+ /

Velocity [km/h]

10+ / \ , \

0 20 40 60 80 100
Time [s]

160 180 200

39/47

Numerical Accuracy — Solution time — Parallel Computing in Matlab

Fuel consumption (mass):4.9026L/100km

0.04 -
_ 0.03 ~
[5)
2
g
© 0.02 -
=}
€
3
S 001 |
< ’/
—
ol Wi | I I I I I I I |
0 20 40 60 80 100 120 140 160 180 200
SoC
05 r
0.495 -
&
O
(@]
» 049 -
A 8OC=1e-3, M (=5.2196 I/100 km, t=0.44175
A SOC=1e-4,M f=4'922 1/100 km, t=9.7944
A SOC=1e-5, M (=4.9026 I/100 km, t=800.6725
0.485 1 1 1 1 1 1 I I I |
0 20 40 60 80 100 120 140 160 180 200
VZ
14
12
10
o
E 8
S,

SOC [%]

Accumulated fuel

0.04

0.03 -

0.02 -

Fuel consumption (mass):4.9019L/100km

0.5

0.495

0.485 -

50 100 150

SoC

A SOC=1e-3, M (=5.2196 1/100 km, t=10.176
A SOC=1e-4,M (=4.9221/100 km, t=11.1022
A 8OC=1e-5, M ;=4.9026 1/100 km, t=71.5135

/ [m/s]

A SOC=5e-6, M .=4.9019 I/100 km, t=232.2297
| |
50 100 150
v

200

40/47

Your Implementation Task 1 — The process of constructing a solution

Analysis of complexity:
Consider a two dimensional problem that have N, and N, points in their grids
and N; time points.

@ At each time step N; we have to:

@ evaluate all points N N, in the sheet and for each of them

@ all their Ny N, following potential candidates

SO

-t €ney Resulting in a complexity of
T =k N; NZN?

So it is quadratic in each dimension
and linear in time

Exponential curse of dimensions (p-dim.)

|l

T =k N2P

H function that colewlates

all ace-costs as a 2D-makdit, Finishe ol

41/47

General Advice

Velocity [km/h]

40

w
S

n
S

=
o

o

@ Work with arc costs and debug
@ Use Matlab matrix math

@ Start with a smaller problem to
learn

@ Start with a coarser grid and

G

o then refine

@ When you are convinced that

| you have the solution ready
] then increase the problem size
and level of detail

(. @ Computation time for series
hybrid ~ 1 hour

80 100 120 140 160 180 200
Time [s]

42/47

Parallel Hybrid Example

Te— motor

@ Fuel-optimal torque split factor u(SOC, t) =

@ ECE cycle

Tgearbox

@ Constraints SOC(t = t;) > 0.6, SOC € [0.5,0.7]

0.7

[=]

h

=]

o
T

S0C [-], speed scaled []
o o
o <

0.5

50

100

time [s]

1

50 200

boost

pure electric

pure thermal

recharging

mresdise

43/47

Parallel Hybrid Example

@ Fuel-optimal torque split factor u(SOC, t) = Te—motor

Tgearbox

@ NEDC cycle

@ Constraints SOC(t = t;) = 0.6, SOC € [0.5,0.7]

0.7

0.65

0.6

SoC [-], speed scaled [-]

600
time [s]

800

1000

1200

pure electric
boost
pure thermal

recharging

st
infeasible

44/47

Complex example - Electric Rear Axle Drive (ERAD)

Battery/ultra cap

I——) - e e — .- — e c— — — — E— —)

Haldex eTVD

45/47

After unwiding the Solution—Study the resuls and optimal behavior

EM ISG
O Traction 8r O Load Shift

1001

system models.

S; + Regeneration ‘ r + Regeneration
I 719 & &
e Il @ Advanced component and
il

@ We know the optimal results.

st
2 - I @ DDP is the benchmark used
% for comparisons.
* il @ Non causal uses full
information.
o |
215
f“” / : How to design a control system
20 S, o % 033;/0 7 that achieves this behavior? J
—40U !‘l"‘“‘ I . 0 (f(?f‘
0 2000 4000 6000 8000 0.5 1 15
Wice [rpml Wey rpml Wisg [Pm] 5 10*

46/47

	Repetition
	``Traditional'' Optimization
	Different Classes of Problems
	An Example Problem

	Optimal Control
	Problem Motivation

	Deterministic Dynamic Programming
	Problem setup and basic solution idea
	Cost Calculation – Two Implementation Alternatives

	Hand-In Task 2
	The Provided Tools
	Case Studies

