
Vehicle Propulsion Systems
Lecture 5

Deterministic Dynamic Programming and Some Examples

Lars Eriksson
Professor

Vehicular Systems
Linköping University

April 11, 2024

1 / 47

Outline

1 Repetition

2 “Traditional” Optimization
Different Classes of Problems
An Example Problem

3 Optimal Control
Problem Motivation

4 Deterministic Dynamic Programming
Problem setup and basic solution idea
Cost Calculation – Two Implementation Alternatives

5 Hand-In Task 2
The Provided Tools
Case Studies

2 / 47



Energy consumption for cycles

Numerical values for MVEG-95, ECE, EUDC

air drag =
1

xtot

∑
i∈trac

v̄3
i h = {319,82.9,455}

rolling resistance =
1

xtot

∑
i∈trac

v̄i h = {.856,0.81,0.88}

kinetic energy =
1

xtot

∑
i∈trac

āi v̄i h = {0.101,0.126,0.086}

ĒMVEG-95 ≈ Af cd 1.9 · 104 + mv cr 8.4 · 102 + mv 10 kJ/100km

3 / 47

Hybrid Electrical Vehicles – Parallel

Two parallel energy paths

4 / 47



Hybrid Electrical Vehicles – Serial

Two paths working in series
Decoupled through the battery

5 / 47

Component modeling

Model energy (power) transfer and losses
Using maps η = f (T , ω)

Combustion engine map Electric motor map

1000 1500 2000 2500 3000 3500 4000 4500

Engine speed [rpm]

50

100

150

200

250

300

E
n

g
in

e
 l
o

a
d

 -
 T

q
 [

N
m

]

Map points + BSFC [g/kWh]

219

219

2
2
0

220

220

222

22
2

222

226

226

226
226

234

234

234

234

234

23
4

248
248

248

248

248
248

276 276

276

276

276
276

328 328
328

328

328

427 427 427
250

300

350

400

450

500

550

600

Using parameterized (scalable) models
–Willans approach

6 / 47



Battery – Standard model in this course

Simple model for the battery
–Open circuit voltage Uoc(SOC)
–State of charge SOC, (Q/Qmax )

Output voltage

U2 = Uoc(SOC)− Ri I2
dQ
dt

= −I2

C-rate
How fast is the battery (pack) charged.

C=1, full capacity in 1 hour.

I2

U2Uoc

Ri

To protect the battery we need to:
impose limits on the current.
avoid emptying the battery completely
avoid over filling the battery

Separate lecture on batteries will come in May – New Course will start 2025

7 / 47

Voltage and SOC

Typical characteristics. Can extract inner resistance, and capacity.
(Image source: batteryuniversity.com)

8 / 47



Two important battery estimation problems

SOC – State of Charge. Current and voltage sensing.
SOH – State of Health. Cycle monitoring, current and voltage sensing.
Prolonging life: Temperature monitoring and current limits important.

9 / 47

Model implemented in QSS

Conventional powertrain

Efficient computations are important
–For example if we want to do optimization and sensitivity studies.

10 / 47



Outline

1 Repetition

2 “Traditional” Optimization
Different Classes of Problems
An Example Problem

3 Optimal Control
Problem Motivation

4 Deterministic Dynamic Programming
Problem setup and basic solution idea
Cost Calculation – Two Implementation Alternatives

5 Hand-In Task 2
The Provided Tools
Case Studies

11 / 47

Optimization – Linear Programming

Linear problem
min

x
cT x

s.t. A x = b
x ≥ 0

Convex problem
Much analyzed: existence, uniqueness, sensitivity
Many algorithms: Simplex the most famous

About the word Programming
–The solution to a problem was called a program

12 / 47



Optimization – Non-Linear Programming

Non-linear problem
min

x
f (x)

s.t. g(x) = 0
x ≥ 0

For convex problems
–Much analyzed: existence, uniqueness, sensitivity.
–Many (fast) algorithms.
For non-convex problems
–Some special problems have unique solutions
–Local optimum is not necessarily a global optimum
As engineers you need a methodology to ensure that you get a good solution.

Industry is not always interested in The Optimal solution
–more often a Good Solution is enough.

13 / 47

Mixed Integer and Combinatorial Optimziation

Problem
min

x
f (x , y)

s.t. g(x , y) = 0
x ≥ 0
y ∈ Z+

Inherently non-convex y
Generally hard problems to solve.
Much analyzed
–Existence, uniqueness, sensitivity
–Many types of problems
–Many algorithms are available

14 / 47



An Example Problem – With Interesting Properties

What gear ratios give the lowest fuel consumption for a given drivingcycle?
–Problem presented in appendix 8.1

Problem characteristics
Countable number of free variables, ig,j , j ∈ [1,5]
A “computable” cost, mf (· · · )
A “computable” set of constraints, model and cycle
The formulated problem

min
ig,j , j∈[1,5]

mf (ig,1, ig,2, ig,3, ig,4, ig,5)

s.t. model and cycle is fulfilled

When the problem is formulated
–Select and apply a solver.

15 / 47

Some comments on practical optimiztion

General process
Find the “right” problem formulation

Model of the system
Important properties, and your goal
Constraints: What do you want to aviod

Find and use the right solver for the problem
Analyze the solution and (perhaps) reconsider the problem and iterate

Fundamental Issues that you Should be Aware Of
All optimal solutions are extreme points
The optimizer (solver) will shamelessly exploit all weaknesses of your model and
problem formulation
That’s why you often need to reconsider the problem formulation

16 / 47



Outline

1 Repetition

2 “Traditional” Optimization
Different Classes of Problems
An Example Problem

3 Optimal Control
Problem Motivation

4 Deterministic Dynamic Programming
Problem setup and basic solution idea
Cost Calculation – Two Implementation Alternatives

5 Hand-In Task 2
The Provided Tools
Case Studies

17 / 47

Optimal Control – Problem Motivation

Car with gas pedal u(t) as control input:
How to drive from A to B on a given time with minimum fuel consumption?

Infinite dimensional decision variable u(t).

Cost function
∫ tf

0 ṁf (t)dt
Constraints:

Model of the car (the vehicle motion equation)

mv
d
dt v(t) = Ft(v(t),u(t)) −(Fa(v(t)) + Fr (v(t)) + Fg(x(t)))

d
dt x(t) = v(t)

ṁf = f (v(t),u(t))

Starting point x(0) = A
End point x(tf ) = B
Speed limits v(t) ≤ g(x(t))
Limited control action 0 ≤ u(t) ≤ 1

Difficult problem to solve analytically, only some special cases are solvable.
18 / 47



General problem formulation

Performance index

J(u) = ϕ(x(tb), tb) +
∫ tb

ta
L(x(t),u(t), t)dt

System model (constraints)

d
dt

x = f (x(t),u(t), t), x(ta) = xa

State and control constraints
u(t) ∈ U(t)

x(t) ∈ X (t)

19 / 47

Optimal Control – Historical Perspective

Old subject
Rich theory

Old theory from calculus of variations
Much theory and many methods were developed during 50’s-70’s
Theory and methods are still being actively developed

Dynamic programming, Richard Bellman, 50’s.
A modern success story:
–Model predictive control (MPC)
Now a new interest for collocation methods:
–A few during 1990’s
–Much interest 2000–

Separate Course ⇒ TSRT08 Optimal Control

20 / 47



Outline

1 Repetition

2 “Traditional” Optimization
Different Classes of Problems
An Example Problem

3 Optimal Control
Problem Motivation

4 Deterministic Dynamic Programming
Problem setup and basic solution idea
Cost Calculation – Two Implementation Alternatives

5 Hand-In Task 2
The Provided Tools
Case Studies

21 / 47

Dynamic programming – Problem Formulation

Optimal control problem

min J(u) = ϕ(x(tb), tb) +
∫ tb

ta
L(x(t),u(t), t)dt

s.t .
d
dt

x = f (x(t),u(t), t)

x(ta) = xa

u(t) ∈ U(t)
x(t) ∈ X (t)

x(t), u(t) functions on t ∈ [ta, tb]
Search an approximation to the solution by discretizing

the state space x(t)
and maybe the control signal u(t)

in both amplitude and time.
0 1 2

The result is a combinatorial (network) problem
22 / 47



Dynamic Programming (DP) – Problem Formulation

Find the optimal control sequence π0(x0) = {u0,u1, . . . ,uN−1} minimizing:

J(x0) = gN(xN) +
N−1∑
k=0

gk (xk ,uk ,wk )

subject to:

xk+1 = fk (xk ,uk ,wk )

x0 = x(t = 0)
xk ∈ Xk

uk ∈ Uk

Disturbance wk

Stochastic vs Deterministic DP
23 / 47

DDP – Basic Algorithm

J(x0) = gN(xN) +
N−1∑
k=0

gk (xk ,uk )

xk+1 = fk (xk ,uk )

Bellman’s Theory and Algorithm:
–Start at the end and proceed backward in time
–Determine the optimal cost-to-go
–Store the corresponding control signal

0 1 2 NN − 1 t

x

k =

ta tb

24 / 47



DDP – Basic algorithm

J(x0) = gN(xN) +
N−1∑
k=0

gk (xk ,uk )

xk+1 = fk (xk ,uk )

Algorithm:
1 Set k = N, and assign final cost JN(xN) = gN(xN)
2 Set k = k − 1
3 For all points in the state-space grid, find the optimal cost to go

Jk (xk ) = min
uk∈Uk (xk )

gk (xk ,uk ) + Jk+1(fk (xk ,uk ))

4 If k = 0 then return solution
5 Go to step 2

25 / 47

Deterministic Dynamic Programming – Basic Algorithm

Fundamental idea
Construct the Cost-to-go by solving small subproblems.

Graphical illustration of the solution procedure

2

3

2

1

2

0

1

0 1 N2

1

2

3

2

1

0

0

2

4

x

k =

ta tb

N − 1 t

JN(xN)

26 / 47



Arc Cost Calculations

For an arc
You know where you are
also know all places you can go to

There are two ways for calculating the arc costs
Calculate the exact control signal and cost for each arc
–Quasi-static approach
Make a grid over the control signal and interpolate the cost for each arc
–Forward calculation approach

Matlab implementation – it is important to utilize matrix calculations
Calculate the whole bundle of arcs in one step
Add boundary and constraint checks

27 / 47

Pros and Cons with Dynamic Programming

Pros
Globally optimal, for all initial conditions
Can handle nonlinearities and constraints
Time complexity grows linearly with horizon
Use output and solution as reference for comparison

Cons
Non causal
Time complexity grows “exponentially” with number of states, curse of dimensionality
2-3 states are often at the limit

28 / 47



Calculation Example

Problem 200s with discretization ∆t = 1s.
Control signal discretized with 10 points.
Statespace discretized with 1000 points.
One evaluation of the model takes 1µs
Solution time:

Brute force:
Evaluate all possible combinations of control sequences.
Number of evaluations, 10200 gives ≈ 3 · 10186 years. (Universe is ≈ 13.8 · 109 years.)
Dynamic programming:
Number of evaluations: 200 · 10 · 1000 gives 2 s.

(Example contributed by ETH)

29 / 47

Outline

1 Repetition

2 “Traditional” Optimization
Different Classes of Problems
An Example Problem

3 Optimal Control
Problem Motivation

4 Deterministic Dynamic Programming
Problem setup and basic solution idea
Cost Calculation – Two Implementation Alternatives

5 Hand-In Task 2
The Provided Tools
Case Studies

30 / 47



Hand-In Task 2 – Energy Management of Two Hybrids

Optimize the fuel consumption of 2 hybrids over driving cycles, using DDP

Parallel Hybrid

One degree of freedom
– SOC, main control variable
– Engine speed is given by the cycle

Series Hybrid

Two degrees of freedom
– SOC, main control variable
– Engine speed can be freely selected

31 / 47

The Provided Tools for Hand-in 2 and the Goals

Tasks and Tools
Investigate optimal control of one parallel and one series hybrid configuration in different
driving profiles

Some Matlab-functions provided
Skeleton file for defining the problems
2 DDP solvers, 1-dim and 2-dim.
2 skeleton files for calculating the arc costs for parallel and serial hybrids

Solve the problems, analyze the solutions, see if they are generalizable

Learning Goals
Knowledge about operation modes of different hybrid topologies
Experience in modeling of hybrid electric vehicles
Experience from working and solving an optimal control problem
See the benefits of different hybrid topologies

32 / 47



Tools

Problem setup –
testHybrids.m

–Your Analysis Task

DDP Solver –
dynProg1D.m
–Given

Arc Calculator –
parallelHybrid.m
–Your main
Implementation Task

33 / 47

Your Implementation Task 1 – The process of constructing a solution

You will implement the arc cost calculations, for a bundle of arcs.

34 / 47



Your Implementation Task 1 – The process of constructing a solution

Upgrading to Series-Hybrid – 2 DoF
1D arc bundles → 2D arc bundles

 

Series Hybrid 2 Degrees of Freedom SOC we

i
i

i

we Ii hasta

35 / 47

Your Implementation Task 2 – Unwiding the Solution

The functions dynProg1D and dynProg2D returns
The cost to go function values and solution steps
Solution: Information about the next step
Unwind: Start from the initial value and follow the path to the end

36 / 47



Unwiding the Solution

37 / 47

Numerical Accuracy

DDP guarantees a global solution – but only within the discretization
More accurate discretization might be needed to see the details in a solution

38 / 47



Unwided Solution – Higher Accuracy

39 / 47

Numerical Accuracy – Solution time – Parallel Computing in Matlab

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

A
c
c
u

m
u

la
te

d
 f

u
e

l

Fuel consumption (mass):4.9026L/100km

0 20 40 60 80 100 120 140 160 180 200

0.485

0.49

0.495

0.5

S
O

C
 [

%
]

SoC

 SOC=1e-3, M
f
=5.2196 l/100 km, t=0.44175

 SOC=1e-4, M
f
=4.922 l/100 km, t=9.7944

 SOC=1e-5, M
f
=4.9026 l/100 km, t=800.6725

0 20 40 60 80 100 120 140 160 180 200

Time [s]

0

2

4

6

8

10

12

14

V
e

lo
c
it
y
 [

m
/s

]

V
z

0 50 100 150 200
0

0.01

0.02

0.03

0.04

A
c
c
u
m

u
la

te
d
 f
u
e
l

Fuel consumption (mass):4.9019L/100km

0 50 100 150 200

0.485

0.49

0.495

0.5

S
O

C
 [
%

]

SoC

 SOC=1e-3, M
f
=5.2196 l/100 km, t=10.176

 SOC=1e-4, M
f
=4.922 l/100 km, t=11.1022

 SOC=1e-5, M
f
=4.9026 l/100 km, t=71.5135

 SOC=5e-6, M
f
=4.9019 l/100 km, t=232.2297

0 50 100 150 200

Time [s]

0

2

4

6

8

10

12

14

V
e
lo

c
it
y
 [
m

/s
]

V
z 40 / 47



Your Implementation Task 1 – The process of constructing a solution
Analysis of complexity:
Consider a two dimensional problem that have Nx and Ny points in their grids
and Nt time points.

At each time step Nt we have to:

evaluate all points Nx Ny in the sheet and for each of them

all their Nx Ny following potential candidates 

Series Hybrid 2 Degrees of Freedom SOC we

i
i

i

we Ii hasta

Resulting in a complexity of

T = k Nt N2
x N2

y

So it is quadratic in each dimension
and linear in time

Exponential curse of dimensions (p-dim.)

T = k N2 p

41 / 47

General Advice

Work with arc costs and debug
Use Matlab matrix math
Start with a smaller problem to
learn
Start with a coarser grid and
then refine
When you are convinced that
you have the solution ready
then increase the problem size
and level of detail
Computation time for series
hybrid ∼ 1 hour

42 / 47



Parallel Hybrid Example

Fuel-optimal torque split factor u(SOC, t) = Te−motor
Tgearbox

ECE cycle
Constraints SOC(t = tf ) ≥ 0.6, SOC ∈ [0.5,0.7]

43 / 47

Parallel Hybrid Example

Fuel-optimal torque split factor u(SOC, t) = Te−motor
Tgearbox

NEDC cycle
Constraints SOC(t = tf ) = 0.6, SOC ∈ [0.5,0.7]

44 / 47



Complex example - Electric Rear Axle Drive (ERAD)

45 / 47

After unwiding the Solution–Study the resuls and optimal behavior

2000 4000 6000
0

50

100

150

200

250

0.04
0.08

0.12
0.12

0.
16

0.16
0.16

0.
2

0.
2

0.2

0.2

0.
22

0.
22

0.22

0.
22

0.
24

0.
24

0.24 0.
24

0.
24

0.24

0.24

0.
26

0.
26

0.26

0.26

0.26

0.
26

0.26

0.
28

0.
28

0.28

0.28

0.28

0.28

0.28

0.295

0.
29

5

0.295 0.
29

5

0.
29

5

0.295

0.295

0.
31

0.31

0.31

0.
31

0.31

0.
31

0.325

0.325

0.325

0.325
ICE

W
ICE

 [rpm]

T
IC

E
 [N

m
]

0 2000 4000 6000 8000
−40

−20

0

20

40

60

80

100

0.
65

0.
7

0.7

0.
7

0.75

0.75

0.
75

0.75

0.
8

0.8

0.8

0.
8

0.
8

0.815
0.8150.815

0.
81

5

0.815

0.
81

5

0.
83

0.
83

0.83

0.83
0.83

0.
83

0.83

0.
84

5

0.
84

5

0.845
0.845

0.
86

0.
86

0.
87

5

0.
87

5

0.890.9
05

W
EM

 [rpm]

T
E

M
 [N

m
]

EM

 

 Traction
Regeneration

0.5 1 1.5

x 10
4

0

1

2

3

4

5

6

7

8

0.65

0.7

0.
7

0.7
0.70.75

0.
75

0.
75

0.
75

0.
8

0.
8

0.8
0.8

0.815
0.815

0.
81

5

0.815

0.83
0.83

0.
83

0.83

0.
84

5

0.845
0.845

0.
84

5
0.845

0.8450.
86

0.86
0.86 0.

86
0.86

0.86

0.
87

5

0.875

0.
87

5

0.875

0.875

0.
89

0.89

0.89
0.905

0.905

W
ISG

 [rpm]

T
IS

G
 [N

m
]

ISG

 

 Load Shift
Regeneration

Advanced component and
system models.
We know the optimal results.
DDP is the benchmark used
for comparisons.
Non causal uses full
information.

How to design a control system
that achieves this behavior?

46 / 47


	Repetition
	``Traditional'' Optimization
	Different Classes of Problems
	An Example Problem

	Optimal Control
	Problem Motivation

	Deterministic Dynamic Programming
	Problem setup and basic solution idea
	Cost Calculation – Two Implementation Alternatives

	Hand-In Task 2
	The Provided Tools
	Case Studies


