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Hybrid Electrical Vehicles — Parallel

@ Two parallel energy paths
@ One state in QSS framework, state of charge
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Hybrid Electrical Vehicles — Serial

@ One path; Operation decoupled through the battery
@ Two states in QSS framework, state of charge & Engine speed
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Optimization

What gear ratios give the lowest fuel consumption for a given drivingcycle?
—Problem presented in appendix 8.1
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Problem characteristics
@ Countable number of free variables, iy, j € [1,5]
@ A “computable” cost, my(---)
@ A “‘computable” set of constraints, model and cycle
@ The formulated problem
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- min Mi(lg,1, g2, ig.3, g4 lg5)
Ig,jv 16[1 75]

Optimal Control — Problem Motivation

Car with gas pedal u(t) as control input:
How to drive from A to B on a given time with minimum fuel consumption?
@ Cost function 3 (6 dt
Fuel mass-flow model my = L(v(t), u(t)) (engine efficiency)
@ Infinite dimensional decision variable u(t)
@ Constraints:
e Differential equations: Model of the car (the vehicle motion equation)

mygv(t) = F(v(t),u(t)) —(Fa(v()) + F(v(1) + Fg(x(1)))
ax(t) = v(1)

Starting point x(0) =

End point x(#) = B

Limited control action 0 < u(t) < 1
Speed limits v(t) < g(x(t))
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General problem formulation

@ Cost function (a functional)
b
Jw) = 6(x(t).to)+ [ L), u(t) et

@ Dynamic system model (constraints)

%x = F(x(t), u(t), 1), x(ts) = Xa

@ Control and state (path) constraints
u(t) € U(t)
x(t) € X(t)
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Dynamic programming — Problem Formulation

@ Optimal control problem
y
min J(U) = ¢(x(tp), tp) +/b L(x(t),u(t), t)dt
ta

s.t. %x = f(x(t),u(t), 1)

X(t3) = Xa
u(t) e U(t)
x(t) € X(t)

@ x(1), u(t) functions on t € [t, tp]
@ Search an approximation to the solution by discretizing

e the state space x(t)
e and maybe the control signal u(t)

in both amplitude and time.

@ The result is a combinatorial (network) problem
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Deterministic Dynamic Programming — Basic algorithm

Discretize the time and state space, and search for an approximation to the solution.

N—1

J(x0) = gnOw) + > gk (X, U)

k=0

Xi+1 = Fe(Xk, Uk)

Guarantees a global solution, within the grid.

Algorithm idea

Start at the end and proceed

backwards in time to build up an
optimal cost-to-go function, store
the corresponding control signal.
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Parallel Hybrid Example

@ Fuel-optimal torque split factor u(SOC, t) = Te—motor

@ ECE cycle

Tgearbox

@ Constraints SOC(t = tf) > 0.6, SOC < [0.5,0.7]
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e Energy Management Systems — Supervisory Control Algorithms
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Parallel Hybrid — Modes and Power Flows

The different modes for a parallel hybrid

U = Ppatt/ Pvenicle

Battery drive mode (ZEV)

Parallel Hybrid
ZEV mode, u=1 E
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Control algorithms
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Driving prefile Gear box Electric motor

ILJ (electric path)

Contral slrategly
@ Determining the power split ratio u

Pi(t)
J
ui(t) = (4.110)
! Pm11(t) + Pi(t)
@ Clutch engagement disengagement B; € {0,1}
@ Engine engagement disengagement B € {0,1}
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Strategies for the Parallel Hybrid

Power split u, Clutch B¢, Engine Bg

Mode u B B:
1 ICE 0 1 1
2a ZEV 1 0O O
2b ZEV 1 0o 1
3  Power assist [0,1] 1 1
4  Recharge <0 1 1
5a Regenerative braking 1 0O O
5a Regenerative braking 1 0o 1

All practical control strategies have engine shut off when the torque at the wheels are
negative or zero; standstill, coasting and braking.
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Classification | — Supervisory Control Algorithms

@ Non-causal controllers
@ Detailed knowledge about future driving conditions.
e Position, speed, altitude, traffic situation.

e Uses:
Analyses of optimal behavior on regulatory drive cycles
Public transportation, long haul operation, GPS based route planning.

@ Causal controllers

e No knowledge about the future.
@ Use information about the current state.

e Uses:
“The normal controller”, on-line, in vehicles without planning
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Classification Il — Vehicle Controllers

@ Heuristic controllers
—Causal
—State of the art in most prototypes and mass-production
@ Optimal controllers
—Often non-causal
—Some causal solutions exist, ECMS.
@ Sub-optimal controllers
—Uses optimization to solve a smaller sub-problems
—Often causal.

On-going work to include optimal controllers in production vehicles. |
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Some Comments About the Problem

Important problem for the industry — Area of competition
Difficult problem
Unsolved problem for causal controllers

Rich body of
engineering reports and
research papers on the subject

—This can clearly be seen when reading chapter 7!
It has been the main research area for Lino Guzzella and Antonio Sciarretta.
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e Heuristic Control Approaches
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Heuristic Control Approaches

Operation usually depends on a few vehicle operation

@ Rule based:

Nested i f-then-else clauses
if Vv <V, then use electric motor (u=1).

else...

@ Fuzzy logic based

Classification of the operating condition into fuzzy sets.

Rules for control output in each mode.
Defuzzyfication gives the control output.
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Heuristic Control Approaches
@ Parallel hybrid vehicle (electric assist)
T o
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- u=1

w=1
ﬁive braking

active braking

@ Determine control output as function of some selected state variables:

vehicle speed, engine speed, state of charge, power demand, motor speed,

temperature, vehicle acceleration, torque demand.
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Heuristic Control Approaches — Concluding Remarks

Easy to conceive

Relatively easy to implement

Result depends on the thresholds

Proper tuning can give good fuel consumption reduction and charge sustainability

Performance varies with cycle and driving condition
—Not robust

@ Time consuming to develop and tune for advanced hybrid configurations
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@ Optimal Control Strategies
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Consider a driving mission

@ Variables.
Control signal — u(t), System state — x(t), State of charge - q(t) (is a state).

?ﬂr q

net storage |

net depletion ]

I'I'I

0 Mission tg 25/48

Formulating the Optimal Control Problem

—What is the optimal behaviour? Defines Performance index J.
@ Minimize the fuel consumption

tf
J= [ mt, u(t))dt
0

@ Balance between fuel consumption and emissions
tf . .
J= [t ute) + ccomoolx(e). u(t)+
anoMno(X(t), u(t)) + apcMuc(X(1), u(t))| dt

@ Include driveability criterion

i d_ .\
J= [t u(®) + 5 (Ea(t)> ot
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Towards a Solution to the Problem

In the course we are focusing on the fuel consumption. J

@ Minimize the fuel consumption

ff
J= [ mt, ut))dt
0

@ The driving cycle is specified, no freedom
@ Our freedom is in the choice of how to use the electric energy in the battery

@ The focus is also on hybrid vehicles that need to be charge sustaining
— Constraint g(0) = q(t)

@ Plugin Hybrid Electric Vehicles (PHEV) can be treated similarly, where the discharge
profile is specified.
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Including the constraint

@ Hard or soft constraints

min J(U) = /tf L(t, u(t))dt
0
s.t. q(0) = q(t)

tf

min J(u) = ¢(q(tr)) + A L(t, u(t))dt

@ How to select ¢(q(tr))?
o(a(tr)) = a(q(ty) — 9(0))?

penalizes high deviations more than small, independent of sign

o(q(tr)) = w(q(0) — q(tr))

penalizes battery usage, favoring energy storage for future use

@ One more feature from the last one
28/48



Including the constraint

@ Including battery penalty according to

tf

¢(q(tr)) = w(q(0) — q(tr)) = —w ; q(t)adt

enables us to rewrite

t _
min J(u):/o L(t, u(t)) — wg(t)at

@ Note the similarity to the method of using Lagrange multiplier.
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Constraints That are Also Included

@ State equation x = f(x) is also included
@ We are considering a parallel hybrid with only one state, the SoC (or equivalently

q(t))

tf
min J(U) = 3(q(ty). t) + /o L(t, u(t)) ot

s.t. %q = (£, q(1), u(?))
u(t) € U(t)

q(t) € Q1)
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Outline

e Anlytical Solutions to Optimal Energy Management Problems
@ Pontryagin’s Maximum Principle

@ ECMS - Equivalent Consumption Minimization Strategy
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Numerical Methods for Solving Optimal Control Problems

‘ Numerical optimal control |

Hamilton-Jacobi-Bellman equation

Indirect methods Direct methods

“Tabulation in state space”
— Dynamic programming (discrete systems)

“Optimise, then discretise”
— Pontryagin, solve two-point BVP

“Discretise, then optimise”
— Transform into NLP

— Curse of dimensionality

— Hamiltonian dynamics ill-conditioned
— Initialisation of the BVP difficult
— First-order optim. cond. “by hand”

+ Flexible
+ Efficient (sparsity)

+ Robust (with respect to
initialisation)

— ! I

Control parameterisation

Control and state parameterisation

“Sequential approach” — ODE always feasible

“Simultaneous approach” — ODE satisfied only after optim.

+ Simple to implement
— Sensitivity (“tail wags the dog”)
— ODE solver has to provide consistent sensitivities

+ Many degrees of freedom during optimisation
+ Sparsity | + Can handle unstable systems
— Same discretisation of control inputs and state variables

Single shooting Multiple shooting

Direct transcription

Only discretised Small intervals

control inputs in NLP

— Initial state of each interval in NLP

Apply discretisation scheme to ODE
— All discretised control inputs and state vars. in NLP

‘ Direct collocation

‘ Families of implicit Runge-Kutta schemes that represent state trajectory by polynomial — continuous solution

Global: pseudospectral methods

Local

One single interval, extremely high order

Low order, fine grid

+ Accuracy of integration
— Grid prescribed, poor approximation of nonsmoothness

+ Arbitrary mesh and order (local refinement)
+ Sparsity

‘ Pseudospectral patching

‘ Few intervals, medium to high order ’— 2

|
Hermite-Simpson

L ]
| [ Crank-Nicholson | [ FEuler backward

Lobatto, 3rd order ‘ | Lobatto, 2nd order ‘ ‘ Radau, 1st order ‘

Overview from Jonas Asprion,
“Optimal Control of Diesel Engines,
Modeling, Numerical Methods, and
Applications”, PhD Thesis, ETH,
(2015).

Commercial Break

Course TSRT08 Optimal Control
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Analytical Solutions to Optimal Control Problems

@ A general optimal control problem formulation

min J(U) = o(x(t), tr) + /Otf L(t, u(t))dt
s.t. x(t) = f(t, x(t), u(t))
@ Hamiltonian defined in optimal control theory
H(t, x(t), u(t), A(t)) = L(t, u(t)) + A(t) f(t, x(), u(t))

@ \(1) is a Lagrange multiplier, it's a dear child with many names

e Lagrange variable

e Adjoint state

e Co-state

e Most often denoted A(t), but u(t) is also used.
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Analytical Solutions to Optimal Control Problems

@ Hamiltonian
H(t, x(t), u(t), \(t)) = L(t, x(t)) + A(t) f(t, x(t), u(t))

@ Necessary conditions for optimality

x(1) =F(t, (1), u(t))

Af) = — (%H(t, x(t), u(t), A(1))

@ At the optimum x*(t), u*(t), \*(f)
H(x* (1), u™(1), A*(1)) < Hx*(1), u(t), A*(1))
@ Pontryagin’s Minimum/Maximum Principle
u*(t) = argmin H(x*(t), u(t), \*(t))
u(t)

Remaining question: What can we do to find A\*(t)? J
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Modeling a Parallel HEV in a Driving Cycle

The cycle is given so the propulsive power demand Ppy(t) from the Powertrain is given.
@ We want to minimize the fuel energy, i.e. integral of the power P(t).

@ We have the freedom to use electrochemical energy from the battery
Pech(t) = U(t) I(1), this is our control signal u(t).
@ The problem formulation, with charge sustain strategy becomes

tf
min J(u):/o Pi(t, u(t))dt
L, dSOC(t)  Pay(t

dt ~  U(SoC(t)) Qut
SoC(0) = SoC(t)

Pp(T) — Tleng Pf(t) + Nel Pech(t)

where the last algebraic constraint, is the propulsive power demand.
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Energy Management for the Parallel HEV in a Driving Cycle

@ Set up the Hamiltonian

Pech(t)
U(SoC(t)) Quot

H(t, SoC(t), u(t), A(1)) = Pr(t, u(t)) — A(t)

@ Now we use the necessary conditions for the adjoint state.

0 0 Pech(t) _ Pech(t) (9U(SOC(T))

A(t) = _aH(t, x(1), u(t), A(t)) = dSoC U(SoC(1)) Qu:  U(SoC(1))2 Qu: 9SoC

dU(SoC(t
@ Lets have a look at w.
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Battery Voltage and SoC

Typical characteristics. Q=SOC has little or no influence in the normal region.

d
35 I A good model for normal
T WERERESt  gperation is
3.0+ —— LiFePO4 1.5 Ah @ 124 P
ok —— LiFePO4 1.5 Ah @ 18A
" — A1231.1 Ah @ 6A 8U(SOC(t)) =0
;c- 2,01 — A12311Ah @ 124 0SoC
o — A123 1.1 Ah @ 18A Which gives
1.0- .
. AMt)=0
§ 3333336533 2¢%2 3 A(t) thus becomes a constant
AmpHrs >\O

(Source: batteryuniversity.com)
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Solution Algorithm

Set up the models for vehicle and engine with fuel flow and the power electronics and
electric machine.

@ Setup all equations and form the Hamiltonian.
© Make a guess on ).

© Run a drivcycle simulation with your vehicle where you in each step minimize the
Hamiltonian to get the control signal.

© If the charge sustainability is fulfilled then stop.
©@ Modify \g and go to step 3.
A driving cycle is mapped to a ).

If we want to use it in normal driving, we don’t know \¢ and cannot iterate to find it. J
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Analytical Solutions to Optimal Control Problems

If we have an incorrect \g the SoC will drift away from its nominal SoC,¢f value. J

Start with an initial guess then look at SoC and update )\, as we drive, use for example a
Pl-controller.

This is called Adaptive ECMS, as it adapts )\ to the driving cycle. J
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Analytical Solutions to Optimal Control Problems

@ 1o depends on the (soft) constraint

0 )¢(q(tf)) = /special case/ = —w

Ho = q(tr

@ Different efficiencies

d —Wgis, q(tr) > q(0)
pu— t pu—

Ho 8Q(tf)¢(q( ) {_Wchga q(tr) < q(0)

@ Introduce equivalence factor (scaling) by studying battery and fuel power

Hihy
Vb Qm;;zx

s(t) = —pu(t)

ECMS — Equivalent Consumption Minimization Strategy
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Determining Equivalence Factors |

Constant engine and battery efficiencies

1
Sdis =
Ne Nf
Ne
Schg — —
o Ui

@ Collecting battery and fuel energy data
from test runs with constant u gives a
graph

@ Slopes determine Sy and Sgpgy.
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E Ec(ff)

42/48



ECMS On-line Implementation

S Uy < U< 1
V(1)
E, )| ————  model
‘ / v Em(r)
Flowchart Setig 1 Pe(tu) | P, (tu)
Sgig —— | vy
. ‘ p— |
There is also a T-ECMS (telemetry-ECMS) A —= s
Em(%)“44453 H
<. NO
min
YES
M’Opf(!)
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e Plug-in HEV — PHEV — Discharging Strategies
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PHEV — Charge Deplete then Charge Sustain (CDCS)

Statistic analysis shows that most trips are short, good idea to use up all electricity.

SoC Trajectories

1 I

CDCS
Trajectory

SoC

CS-re_qion

o - -

AER |,

CD-region

Blended Trajectory I

- S - -

Distance
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PHEV — Blended Mode

@ 5 Commuter tracks for a car.
@ Compute an SoC(t) reference.

Velocity trajectories — Simulation
T T

o

Speed [m/s]
- n w
o

(=}

—PWL Route Representation
- - - 5 Logged Speed Profiles (Validation)

ol 1 I 1 1
0 10 20 30 40

SoC-reference Trajectories
T

1 I
50 60

@ Use PI controller to follow that SoC(t).

@ Use more theory, DP cost to go can give
A

@ Compare to CDCS.

- T T T
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9 osl R |
@, TS s
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S osl = e DP cost-to-go
228 \'M CDCS
* 0.45[ hhb- -
o,
0.3 ‘ ‘ ‘ o —
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PHEV — Comparison

[11)|dt | [(t)dt | SoC(ts) | C-rate

[Ah] [kg] (mean) (mean)
SoC-ref Detailed 209 5.45 0.295 1.49
Soc-ref Simplified 210 5.43 0.291 1.49
DP cost-to-go 211 5.41 0.287 1.50
CDCS 241 5.85 0.296 1.71

6.8%—9.0% Improvements in fuel economy, with blended strategies.
Viktor Larsson, Lars J. Mardh, Bo Egardt “Comparing Two Approaches to Precompute Discharge Strategies for Plug-in
Hybrid Electric Vehicles”, IFAC AAC, Tokyo, 2013.
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