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0 Introduction
@ Basic Definitions
@ Evolution of Secondary Batteries
@ Some Buzzwords
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When | say batteries: What do you think of?

ik
2l

@ Consumer products, replaceable.
Zn Mn O> with NH4 CI electrolyte (Brunstensbatteri)
— Alkaline Battery Zn Mn O, with KOH electrolyte.
AA, AAA, Button cells (CR=Lithium LiMnO» 3.7V),
(SR=Silver Oxide 1.55V), (LR=Alkaline 1.5 V)

@ Consumer products, rechargeable.
AA, AAA, Formfactors, NiCd (1.25V), NMH (1.2V),
Lilon (4V) (1991). W VARTA

@ Lead Acid Batteries.
Automotive Starter Batteries, UPS.

@ Packs of cells.
Lantern Cell (4.5 V=3x1.5V), Tesla model 3 pack

o NIy

INITONTY

INIGYYH
ANITIYNTY

Batteries can contain poisonous metals, remember to recycle all your electronic devices properly! J
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Basic Battery Definitions

Definition of a Battery

A container consisting of one or more cells, in which chemical energy is converted into
electricity and used as a source of power. History is associated with Volta’s stack of Zinc
and Copper disks separated by paper soaked in salt water.

Benjamin Franklin suggested, in 1748, the term battery for this invention, in the sense of a collection of things used together, like a battery of artillery.

String - A number of cells in Series

Pack - A collection of cells connected
in series and/or parallel

Battery - A unit with a collection of cells
ready for operation, Pack+BMS
Battery Management System

Cell - A single Unit "
Block - A number of cells in Parallel D G G B D D D D G G
W H

&
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Definitions

More Battery

Primary Batteries — Use & Discard Secondary Batteries — Rechargeable

Cell energy density (Wh/kg) Cathode chemistry
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3.8V
1.5 Ah

e d

Separator

The Pouch Cell is sometimes called Lithium Polymer Battery.
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Electro-Chemistry Background — Repetition

Electrolyte A substance that produces an electrically conducting solution when dissolved in a polar
solvent, an example is table salt in water. The dissolved electrolyte separates into cations (+)
and anions (-), which spreads uniformly in the solvent. Electrically, the solution is neutral.

Oxidizing reaction |s when a molecule loses an electron or increases its oxidation state of an atom or ion.
Reducing reaction Is when a molecule gains an electron or decreases its oxidation state of an atom or ion.
Redox reaction The global reaction where there are transfer of electrons between molecules.
Anode The electrode (in batteries) is where the oxidation reaction occurs. Electrons flow out.
Cathode The electrode (in batteries) is where the reduction reaction occurs. Electrons flow in.

Note that anode is - and cathode is + during discharge of a battery (normal usage). But when
charging the battery they switch roles, so anode is + and cathode is -. In most texts this distinction
is not made, instead the anode is always considered to be the - pole and the cathode the + pole.

o
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Turn our Attention to Secondary Batteries — Lead Acid as Initial

Example

Elements in a secondary battery

@ Electrodes:
—Positive and "i"“
—Negative L] e
@ Active Materials: n‘é
—Positive and e
—Negative Fully Being Fully
Charged Discharged Discharged
@ Cathode and Anode + _ 4 _ 4 _
@ Cations and Anions B B B B |
Electrolyt e o
o~ 2 ¢ H2! =
@ Electrolyte 8l N\ (8| ||| ditea |2
@ lon conducting separator 0. - Nt
an

\
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Historical evolution of Secondary Batteries

Secondary battery evolution Mobile
Portable age
age
Industrial age
300
250
Highest energy Li-ion batteries available
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Some definitions that are important

@ State of Charge (SOC) [%]

@ Open Cirquit Voltage (OCV) [V]
@ Internal resistance (IR) [mOhm]
@ Depth of Discharge (DoD) [%]

@ Cut-off voltage [V] (max & min for safe op.)
@ C-rate how fast the battery is charged

e 1C battery is fully charged in 1h
e 2C battery is fully charged in 0.5h
e 0.5C battery is fully charged in 2h

@ Cycle 1 full discharge and full charge

Some definitions that are important
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Capacity
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State of Health (SOH)

@ SOH is a figure of merit that reflects the general condition of a battery and its ability
to deliver the specified performance compared with a fresh battery.

@ It takes into account factors such as charge acceptance, internal resistance, capacity,
voltage and self-discharge.

@ It is a measure of the long term capability of the battery and gives an indication of the
performance that can be expected from the battery.

@ It indicates how much of the lifetime of the battery that has been consumed, and how
much that remains.

@ In an application the SOH is estimated by the battery management system (BMS).
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© The Nickel-Metal Hydride Battery
@ Reactions in the anode and cathode
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Nickel-Metal Hydride — NiMH

The reaction at the cathode reduces nickel | The reaction at the anode oxidizes metal

oxyhodroxide to nickel hydroxide hydride (MH) to the metal alloy (M).
NiOOH + H,O + e~ — Ni(OH)> + OH~ MH+ OH™ — M+ H O+ e~

The energy release gives the voltage The energy release gives the voltage

Eo, =052V ] Eo =083V )

The global redox reaction for the NiMH battery is

. dischg .
MH + NIOOH "=" M + Ni(OH)2  Eo=1.35V
chg

The Hydroxyl lon and Water pass through the electrolyte while the electron released at
the anode goes through the electric circuit to the cathode.
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Nickel-Metal Hydride — NiMH

Active Materials
@ The active cathode material is Nickel Oxyhydroxide (NiOOH).

@ While the active anode metal in NiMH-batteries is not a single metal, but an
engineered alloy that contains a mixture of many metals.

@ There are three basic types of alloys, that in their turn have internal variations.
Las ;Ceq oPry ¢Nd, 3Ni 59,C0,, , Mng g Al ,

e ABs (LaCePrNdNiCoMnAl) La, sCe, 5Pry $Nd, ;Nig, ,Co,, ,Mny AL ;
La, 4Ce, Pry Nds Mg, ;Ni o5 ;Coy g M, Al 5 Zry

Nd,, . Mg, Ni,, ,Co, AL ( Zr

18.7 7477700177736 702

o A;B; (LaCePrNdMgNiCoMnAIZr)
VT, Zr,4Ni,,Cr,Co.Mn,

VTigZr,, ;Niy,Cr;Mn, Sn,, |

@ AB; (VTiZrNiCrCoMnAISn) VsTigZry ) NizgCry sCo, sMn 5 gAly , Sn g

v
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Nickel-Metal Hydride — NiMH

Inactive Materials

@ The electrolyte in NiIMH batteries of all types is routinely a mixture of about 30% potassium
hydroxide (KOH) in water, providing high conductivity over a wide temperature range.

@ It is most common for the electrolyte to have a lithium hydroxide additive at a concentration of
about 17 g/L to promote improved charging efficiency at the nickel hydroxide electrode. This
suppresses the oxygen evolution, which is the competing reaction to charge acceptance.

@ Itis also possible to substitute a portion of the KOH with NaOH. Where NaOH promotes
high-temperature charging-efficiency, although this electrolyte can decrease cycle life through
increased corrosion of the active MH materials.

@ The electrolyte in the nickel-metal hydride batteries used in the Toyota Prius Hybrid, use a
mixture of potassium hydroxide (KOH) and sodium hydroxide (NaOH).

@ The separator is termed “permanently wettable polypropylene”. This separator is a composite
of polypropylene and polyethylene where the base composite fibers require special surface
treatments to make them wettable to the electrolyte.
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Q Lithium lon Batteries
@ Future developments
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Lithium lon Batteries — Components and Operating principles

Anode and Cathode
Store Lithium inside their structures

@ Current Collectors
Copper @ Anode,
Aluminum @ Cathode

@ Bonding interface materials
e~ conducting glue (Carbonite)

@ Electrolyte — Transports Li™

@ Separator
Keeps cathode and anode isolated
Porous, electrolyte and ion transport

@ SE| - Solid Electrolyte Interphase

LiFePO,
Cathode

Electrolyte

Al foil

current
collector\

ncng‘tnc‘é
<

€ g @

Cathode
material

<

(3

Interface

Interfaces

c P et ®

Anode
material

= Lithium-ions

Cu foil

current
/ collector

Interfaces

‘Interface
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Lithium lon Batteries — Components and Operating principles
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Chemical Reactions

Cathode reaction (+)

The reaction at the cathode reduces the
Lithium lon to Lithium when it enters the
Metal oxide

Liy_xMO, + xLit + xe~ — LiMO;

M is a place holder for various Cathode
transition metals. Eg ~ 4 V

Anode reaction(-)

The reaction at the anode oxidizes the
Lithium to Lithium lon when it leaves the
Carbon Structure.

Li,C— C+yLit +ye”

The reaction consumes energy reducing
the voltage Eg ~ —0.2V

The global redox reaction for the Lithium lon battery is

. . dischg .
x/y Li,C+ Lii_xMO» ? x/y C + LiMOs Eqg ~=3.7V
chg
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Lithium lon Batteries — A Family of Cell Chemistries

@ Lithium lron Phosphate (LFP)

@ Lithium Nickel Manganese Cobalt (NMC)
@ Lithium Nickel Cobalt Aluminum (NCA)
@ Lithium Manganese Oxide (LMO)

@ Lithium Cobalt Oxide (LCO)

@ Lithium Titanate (LTO)

LFP

Voltage (V)
w ow ow
[
i

:

o

T 0% 20% 40% 60% 80% 100%

% Capacity
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Even more division in the family of Li-lon Batteries

LCO NCA NCM 111 NCM 532 NCM 622 NCM 811

Manganese Manganese Manganese
Manganese g &

Nickel Nickel Nickel Nickel
Cobalt

Cobalt

Cobalt
Lithium Lithium Lithium Lithium Lithium Lithium

Sodium lon Batteries (Na-ion) are a possible alternative to Lithium lon Batteries. They are
not as energy dense, but they are cheaper, more abundant, and safer. J
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Key Processes in a Cell — Buzz words

@ Intercalation - Like diffusion, but the Lithium ions are inserted into the structure of the
anode and cathode.

@ SEI - Solid-Electrolyte Interphase
@ Dendrite growth
@ Swelling during charging

Lithium lon Batteries
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Lithium lon Batteries

There are different options for materials in Lithium lon Batteries. They are most often
referred to using their Cathode material.

Cathode materials Anode materials

lithium iron phosphate (LFP), nickel cobalt | C - Graphite

manganese (NCM=NMC), lithium cobalt Lis Tis Oq5 - Lithium Titanate

oxide (LCO), lithium manganese oxide Si - Silicon

(LMO), nickel cobalt aluminum (NCA), and

lithium manganese phosphate (LMP) Cathode Market share - 2015

LMO, 12% ,«4
Layered crystal structure Spinel crystal structure Olivine crystal structure :
LiCoO,, LiMn,0, e LiFePO, NCA,
LiNiMnCO, @ Lithium-ion 10%
LiNiCoAIO, .Cathode compounds
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Lithium lon Batteries — Aging Mechanisms 1 (2)

. . Transition metal dissolution and dendrite formation
SEl formation and build-up

@8 Carbon black

SEI decomposition and precipitation 9 ------- ) g Electrolyte (LiPF6)

Lithium plating and dendrite formation
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Lithium lon Batteries — Aging Mechanisms 2 (2)

1. Anode 4, SEl
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Lithium lon Batteries — Cell Voltage and Capacity Comparison

Potential [V] vs. Li*/Li°

'

w

=]

—

ESW - Electrolyte Stability Window
PE — Positive Electrode
NE — Negative Electrode

-

1 NE o=

0 100 200 300 400
Capacity [mAh/g]

ESW

Battery Properties vary with Materials
Most variations are in cathode material

LTO and Graphite are most common
where the latter gives higher voltage.

Outside the stability window the
Electrolyte will start to oxidize and can
become unstable with a high electric field.
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Lithium lon Batteries — Power and Energy
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Why is Lithium Attractive?

Periodic table, lightweight and electronegativity.
Electronegativity of the Elements

28

Ni
1.91
48 @
Pd
2.20
78
Pt
2.28
0 n 2 i Tt 115 16 7 T8
Ds Cn|{Nh| Fl [Mc|Lv | Ts | Og
no data|no data|no data|no data|no data|no data|no data|no data|no data

103

Lr
nodata 30/45



Evolution of Li-lon Batteries

Cell generation | Cell chemistry specifications

Generation IIIb

Generation II1a

Generation IIb

Generation Ila

Generation I

- Cathode: HE-NMC, HVS (high voltage spinel)
- Anode: Si / carbon

- Cathode: NMC 622 to NMC 811
- Anode: carbon (graphite) + 5-10% Si component

- Cathode: NMC 532 to NMC 622
- Anode: carbon (graphite)

- Cathode: NMC 111
- Anode: carbon (graphite)

- Cathode: LCO, LFP, NCA
- Anode: carbon (graphite)

~2020 - 2025

~2020 - 2025

—

L Current
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@ Monitoring and Control of Batteries
@ What can happen (go wrong)?
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Tesla Shanghai Fire

YouTube on the title...
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Secondary Batteries

@ What kills a battery?

@ Control and monitoring of batteries
@ What do we need to monitor?

@ How can this be understood?
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Lithium lon Batteries — Aging Mechanisms 3 (3)

Ageing Stress Degradation Mechanism Degradation
Factors Mode

SEI growth
7
,/ ,r;, SEl decomposition Increase of

Impedance
Electrolyte decomposition
Graphite exfoliation ‘
Lithium plating/Dendrite Loss of
f formgme Lithium
; - o c Inventory
4/~ Eectrode particle cracking
High Current Rate D" Transition metal dissolution <
§ Material

High Pressure Corrosion of current collectors

|
| /
{ /

Li-lon Battery Characteristics & Charging

@ Charging Characteristics, Charging Efficiency

@ Discharge Characteristics

@ Internal Resistance

@ Self-Discharge & Storage

@ Cycle Life & Factors Affecting Cycle Life

@ Effect of Temperature on Voltage, capacity, IR. Self-discharge. life
@ State of Health
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Protection of Li-lon Batteries- Shallow vs Deep Discharge

@ Shallow Discharge
@ Deep Discharge
@ Shallow Discharge vs Deep discharge

42
40
38
36
34
32
30

Voltage (V)

28

24
22

1.8
16
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Cell Cycle Life
100%
m \
r4 NCA . 100%00D | B 80%DOD
= 90% DOD
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LFP ;: 60%
— 2
(=]
m
(=3
m
o 40%
—— ]
= 100% DOD
20% — 90% DOD
— 80% DOD
v[ 0%
0% 40% 60% 0% 100% 0 500 1,000 1,500 2,000 2,500
% Capacity

Cycles
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e Battery Cell Modeling
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Measurements - Step Responses on a Battery Pack

Experiments: Steps in Current. :
@ Dynamic voltage response T W
@ Not a pure resistance and integrator. EZZJ
@ Dynamic elements
@ Time constants
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Normalized Current Profile [A]
n a @ 2 B

@ Steps synchronized
@ Steps enlarged
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Battery Cell Modeling

@ Empirical Models — Physical Models

MD, KMC, etc
P2D +Population
halanci
P2D +Stress-
strain
P3D stack/ e
Porous  Thermal Model ..:-;-1:1“ st e
£ Electrode P2D) | | | ==
= s
: il
& Single iy
Particle . _L ﬂ
Model 0
Empirical '
Models

L

Predictability
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Another Classification that Stays Close to Control and Monitoring

Dischargc Charge
g g

—»x
<t+—L—><+L—b<t—L—>
®
HOOLQRD bidune 0090 B Control
dosor s slesasdl;
s Slo ° 6 OQ5 5
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§ <, 0® C)( ) £ m-line
E O Shuge® O g Maonitoring
) ® e OOQ, E
Flec(ml te Electrolyte
. Optimization
P2D L. |
o—«> <1—0 Model Applications
Electrolyte Parameter
Dlscharg Charge Electrochemical- e | Estimation
based N | ——
sur Age prediction
ce=Const. R Simplified
oo Li-ion Battery Model
Maodel S— Polynomial
Electrolyte Profile
Neural
Ry ] Networks = B
Empirical Models ransier
Rl I Equival function
= ket s
Residual
_l _I Grouping
Vie = Cs Cs )
“T v Galerkin
Approximation
O
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A Dive into the P2D (Doyle-Fuller-Newmann) Model

Describes the spatial state and evolution of:
@ solid? electrolyte concentrations,
@ lon flows, and
@ Potential.
at 2

ACe i (X,t)

Discharge

e ac. k(x t)

0Ber(x,) | 2KgpiRT
—Keff k egx + eFk (1

kXt @ ACe ke (X,t)
k™ at —ﬁ(Deff,k X )

t+) alnc oln Cex _ ¢

sk (X,1yt) _ Dsk d rzacs,k(x,r,t)
or or

e = & Deﬁ,k%’#)‘Fak(]—ﬂ)fk(X,t)

2
6° o Ueff,k%= akF]k(X t)
Separator —O'eﬁ'ykaqjs’k(x’t) _ Keﬁ“,k 3,$X ,t) + 2K, jfkRT (1 _ t+) 611’1 C k _ [
urf\0.5 , surf\0.5 05 0 SFI‘LS,k(xa t) 0~5F/"s,k(xa t)
Tl ) = Kl = )23 )23 [exp (2 ) —p (= 22k
Ms (X, 1) = Dg (X, 8) — De (X, 1) — Up; Veen(t) = Pk (0,t) — Py (L, 1)
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Examples of model packages with P2D and SPM model.

PyBAMM — Open Source models in Python.

COMSOL Multiphysics — Battery Design Module.

e P2D

@ SPM/SPMe

e 1D, 2D, 3D

@ Thermal coupling

@ Electrochemical coupling

Mechanical coupling

Multiphysics

Battery pack design

Battery pack thermal management
Battery pack mechanical Design
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